【題目】八個邊長為1的正方形如圖擺放在平面直角坐標(biāo)系中,經(jīng)過原點的一條直線將這八個正方形分成面積相等的兩部分,則該直線的解析式為( )
A. B. C. D.
【答案】B
【解析】
設(shè)直線l和八個正方形的最上面交點為A,過A作AB⊥y軸于B,作AC⊥x軸于C,易知OB=3,利用三角形的面積公式和已知條件求出A的坐標(biāo)即可得到該直線l的解析式.
解:設(shè)直線l和八個正方形的最上面交點為A,過A作AB⊥y軸于B,作AC⊥x軸于C,
∵正方形的邊長為1,
∴OB=3,
∵經(jīng)過原點的一條直線l將這八個正方形分成面積相等的兩部分,
∴兩邊分別是4,
∴三角形ABO面積是5,
∴OBAB=5,
∴AB=,
∴OC=,
由此可知直線l經(jīng)過(,3),
設(shè)直線l解析式為y=kx,
則3=k,解得:k=,
∴直線l解析式為y=x,
故選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)了一元二次方程的根與系數(shù)的關(guān)系后,小亮興奮地說:“若設(shè)一元二次方程的兩個根為x1,x2,就能快速求出+,x12+x22,…的值了.比如設(shè)x1,x2是方程x2+2x-3=0的兩個根,則x1+x2=-2,x1x2=-3,得+==.”
(1)小亮的說法對嗎?簡要說明理由;
(2)寫一個你最喜歡的一元二次方程,并求出兩根的平方和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC 和△DEF 中,給出下列四組條件:
①AB=DE, BC=EF, AC=DF
②AB=DE, ∠B=∠E, BC=EF
③∠B=∠E, BC=EF, ∠C=∠F
④∠A=∠D, ∠B=∠E, AB=DF
其中能使△ABC≌△DEF 的條件有( )
A.1 組B.2 組C.3 組D.4 組
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過邊長為1的等邊△的邊上一點,作于點,為延長線上一點,當(dāng)時,連接交邊于點,則的長為( )
A.1B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在△中,垂直平分,垂足為點,交直線于點.垂直平分,垂足為點,交直線于點,連接,.
(1)如圖①,若100°,求的大小;
(2)如圖②,若70°,求的大;
(3)若(90°),用含的式子表示的大小(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)為推進書香校園建設(shè),在全校范圍開展圖書漂流活動,現(xiàn)需要購進一批甲、乙兩種規(guī)格的漂流書屋放置圖書.已知一個甲種規(guī)格的漂流書屋的價格比一個乙種規(guī)格的漂流書屋的價格高80元;如果購買2個甲種規(guī)格的漂流書屋和3個乙種規(guī)格的漂流書屋,一共需要花費960元.
(1)求每個甲種規(guī)格的漂流書屋和每個乙種規(guī)格的漂流書屋的價格分別是多少元?
(2)如果學(xué)校計劃購進這兩種規(guī)格的漂流書屋共15個,并且購買這兩種規(guī)格的漂流書屋的總費用不超過3040元,那么該學(xué)校至多能購買多少個甲種規(guī)格的漂流書屋?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某游泳館普通票價為20元/張,暑假為了促銷,新推出兩種優(yōu)惠卡:①金卡售價600元/張,每次憑卡不再收費;②銀卡售價150元/張,每次憑卡另收10元.暑假普通票正常出售,兩種優(yōu)惠卡僅限暑假使用,不計次數(shù)。設(shè)游泳x次時,所需總費用為y元。
(1)分別寫出選擇銀卡,普通票消費時,y與x之間的函數(shù)關(guān)系式;
(2)在同一坐標(biāo)系中,若三種消費方式對應(yīng)的函數(shù)圖象如圖所示,請求出點A、B、C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為2的菱形ABCD中,∠A=60°,點M是AD邊的中點,點N是AB邊上一動點,將△AMN沿MN所在的直線翻折得到△A’MN,連結(jié)A’C,則A’C長度的最小值是( ).
A.B.C.D.2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com