11.方程x2-2013×2015x-20142=0的較小根為m,方程x2-2015x+2014=0的較大根為n,求m-n的值.

分析 先利用因式分解法解兩個方程得到m和n的值,然后求m-n的值.

解答 解:∵x2-(2014-1)(2014+1)x-20142=0,
∴(x-20142)(x+1)=0,
∴x1=20142,x2=-1,則m=-1,
∵x2-2015x+2014=0,
∴(x-1014)(x-1)=0,
∴x1=2014,x2=1,則n=2014,
∴m-n=-1-2014=-2015.

點評 本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

1.若$\sqrt{{x}^{2}}$=9,則x的值是±9.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

2.等式$\sqrt{(2-y)^{2}(6-y)}$=(y-2)$\sqrt{6-y}$成立的條件是( 。
A.y≥2B.y≥6C.2≤y≤6D.y≤4或y≥6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.用代入消元法解下列方程組:
(1)$\left\{\begin{array}{l}{m-2n=4}\\{2m-n=2}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{2x+y=3}\\{3x-5y=11}\end{array}\right.$;
(3)$\left\{\begin{array}{l}{3x+2y=3}\\{x+3y=8}\end{array}\right.$;
(4)$\left\{\begin{array}{l}{\frac{2}{3}y=x+1}\\{2y-5x=1}\end{array}\right.$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

6.計算(4$\sqrt{6}$-4$\sqrt{\frac{1}{2}}$+3$\sqrt{8}$)÷2$\sqrt{2}$的結(jié)果是( 。
A.2$\sqrt{3}$+2B.2$\sqrt{3}$-2C.$\sqrt{3}$+2D.$\sqrt{3}$-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

16.已知a=5-2$\sqrt{6}$,則a2-10a+1的值是( 。
A.-30$\sqrt{6}$B.-18$\sqrt{6}$-2C.0D.10$\sqrt{6}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.當(dāng)x=$\frac{1}{4}$時,求$\frac{x\sqrt{4x}}{2}$+6x$\sqrt{\frac{x}{9}}$-2x2$\sqrt{\frac{1}{x}}$的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

20.等式$\sqrt{(x-3)^{2}(5-x)}$=(x-3)$\sqrt{5-x}$成立的條件是( 。
A.x≥3B.3≤x≤5C.x≥5D.x≥3或x≥5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.先化簡,再求值:($\frac{{x}^{2}}{x-1}$-$\frac{{x}^{2}}{1-x}$)÷$\frac{2x}{{x}^{2}-1}$,其中x為方程x2+x-3=0的根.

查看答案和解析>>

同步練習(xí)冊答案