操作與探索:

已知點O為直線AB上一點,作射線OC,將直角三角板ODE放置在直線上方(如圖①),使直角頂點與點O重合,一條直角邊OD重疊在射線OA上,將三角板繞點O旋轉(zhuǎn)

(1)當三角板旋轉(zhuǎn)到如圖②的位置時,若OD平分∠AOC,試說明OE也平分∠BOC.

(2)若OC⊥AB,垂足為點O(如圖③),請直接寫出與∠DOB互補的角                       

(3)若∠AOC=135°(如圖④),三角板繞點O按順時針從如圖①的位置開始旋轉(zhuǎn),到OE邊與射線OB重合結(jié)束. 請通過操作,探索:在旋轉(zhuǎn)過程中,∠DOB∠COE的差是否發(fā)生變化?若不變,請求出這個差值;若變化,請用含有n(n為三角板旋轉(zhuǎn)的度數(shù))的代數(shù)式表示這個差.

 

【答案】

(1)由OD平分∠AOC可得∠AOD=∠COD,由∠DOE=90°可得∠AOD+∠EOB=90°,∠COD+∠COE=90°,即可證得結(jié)論;(2)∠AOD、∠COE;

(3)①若n≤45°,∠DOB∠COE=135°,②若n>45°,∠DOB∠COE=225°2n

【解析】

試題分析:(1)由OD平分∠AOC可得∠AOD=∠COD,由∠DOE=90°可得∠AOD+∠EOB=90°,∠COD+∠COE=90°,即可證得結(jié)論;

(2)由OC⊥AB可得∠AOD+∠COD=90°,由∠DOE=90°可得∠COD+∠COE=90°,即可得到∠AOD=∠COE,從而可以求得與∠DOB互補的角;

(3)由于旋轉(zhuǎn)45°時,OE與OC重合,故要分n≤45°與n>45°兩種情況分析.

(1)∵OD平分∠AOC

∴∠AOD=∠COD

∵∠DOE=90°

∴∠AOD+∠EOB=90°,∠COD+∠COE=90°

∴∠COE=∠EOB

∴OE也平分∠BOC;

(2)∵OC⊥AB,∠DOE=90°

∴∠AOD+∠COD=90°,∠COD+∠COE=90°

∴∠AOD=∠COE

∴與∠DOB互補的角為∠AOD、∠COE;

(3)①若n≤45°,∠DOB∠COE=(180°-n)-(45°-n)=180°-n-45°+n=135°,

②若n>45°,∠DOB∠COE=(180°-n)-(n-45°)=180°-n-n+45°=225°2n.

考點:旋轉(zhuǎn)的性質(zhì),角平分線的性質(zhì),互補的定義,同角的余角相等

點評:解答本題的關鍵是注意直角三角板的問題往往應用到同角的余角相等的知識,同時熟記旋轉(zhuǎn)對應邊是夾角是旋轉(zhuǎn)角.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知點P是矩形ABCD邊AB上的任意一點(與點A、B不重合).  
(1)如圖①,現(xiàn)將△PBC沿PC翻折得到△PEC;再在AD上取一點F,將△PAF沿PF翻折得到△PGF,并使得射線PE、PG重合,試問FG與CE的位置關系如何,請說明理由;
(2)在(1)中,如圖②,連接FC,取FC的中點H,連接GH、EH,請你探索線段GH和線段EH的大小關系,并說明你的理由;
(3)如圖③,分別在AD、BC上取點F、C′,使得∠APF=∠BPC′,與(1)中的操作相類似,即將△PAF沿PF翻折得到△PFG,并將△PBC′沿PC′翻折得到△PEC′,連接FC′,取FC′的中點H,連接GH、EH,試問(2)中的結(jié)論還成立嗎?請說明理由.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆江蘇省淮安市清浦區(qū)清浦中學中考模擬試卷2數(shù)學試卷(帶解析) 題型:解答題

已知點P是矩形ABCD邊AB上的任意一點(與點A、B不重合)
(1)如圖①,現(xiàn)將△PBC沿PC翻折得到△PEC;再在AD上取一點F,將△PAF沿PF翻折得到△PGF,并使得射線PE、PG重合,試問FG與CE的位置關系如何,請說明理由;
(2)在(1)中,如圖②,連接FC,取FC的中點H,連接GH、EH,請你探索線段GH和線段EH的大小關系,并說明你的理由;
(3)如圖③,分別在AD、BC上取點F、C’,使得∠APF=∠BPC’,與(1)中的操作相類似,即將△PAF沿PF翻折得到△PFG,并將△沿翻折得到△,連接,取的中點H,連接GH、EH,試問(2)中的結(jié)論還成立嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年江蘇泰興實驗初級中學七年級上期末考試數(shù)學試卷(帶解析) 題型:解答題

操作與探索:
已知點O為直線AB上一點,作射線OC,將直角三角板ODE放置在直線上方(如圖①),使直角頂點與點O重合,一條直角邊OD重疊在射線OA上,將三角板繞點O旋轉(zhuǎn)

(1)當三角板旋轉(zhuǎn)到如圖②的位置時,若OD平分∠AOC,試說明OE也平分∠BOC.
(2)若OC⊥AB,垂足為點O(如圖③),請直接寫出與∠DOB互補的角                       
(3)若∠AOC=135°(如圖④),三角板繞點O按順時針從如圖①的位置開始旋轉(zhuǎn),到OE邊與射線OB重合結(jié)束. 請通過操作,探索:在旋轉(zhuǎn)過程中,∠DOB∠COE的差是否發(fā)生變化?若不變,請求出這個差值;若變化,請用含有n(n為三角板旋轉(zhuǎn)的度數(shù))的代數(shù)式表示這個差.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年江蘇省淮安市中考模擬試卷2數(shù)學試卷(解析版) 題型:解答題

已知點P是矩形ABCD邊AB上的任意一點(與點A、B不重合)

(1)如圖①,現(xiàn)將△PBC沿PC翻折得到△PEC;再在AD上取一點F,將△PAF沿PF翻折得到△PGF,并使得射線PE、PG重合,試問FG與CE的位置關系如何,請說明理由;

(2)在(1)中,如圖②,連接FC,取FC的中點H,連接GH、EH,請你探索線段GH和線段EH的大小關系,并說明你的理由;

(3)如圖③,分別在AD、BC上取點F、C’,使得∠APF=∠BPC’,與(1)中的操作相類似,即將△PAF沿PF翻折得到△PFG,并將△沿翻折得到△,連接,取的中點H,連接GH、EH,試問(2)中的結(jié)論還成立嗎?請說明理由.

 

查看答案和解析>>

同步練習冊答案