已知G是△ABC的重心,過A、G的圓與BG切于G,CG的延長(zhǎng)線交圓于D,求證:AG2=GC•GD.

【答案】分析:構(gòu)造以重心G為頂點(diǎn)的平行四邊形GBFC,并巧用A、D、F、C四點(diǎn)共圓巧證乘積.延長(zhǎng)GP至F,使PF=PG,連接FB、FC、AD.因G是重心,故AG=2GP.因GBFC是平行四邊形,故GF=2GP.從而AG=GF.又∠1=∠2=∠3=∠D,故A、D、F、C四點(diǎn)共圓,從而GA、GF=GC•GD.于是GA2=GC•GD.
解答:證明:延長(zhǎng)GP至F,使PF=PG,連接AD,BF,CF,
∵G是△ABC的重心,
∴AG=2GP,BP=PC,
∵PF=PG,
∴四邊形GBFC是平行四邊形,
∴GF=2GP,
∴AG=GF,
∵BG∥CF,
∴∠1=∠2
∵過A、G的圓與BG切于G,
∴∠3=∠D,
又∠2=∠3,
∴∠1=∠2=∠3=∠D,
∴A、D、F、C四點(diǎn)共圓,
∴GA、GF=GC•GD,
即GA2=GC•GD.
點(diǎn)評(píng):本題綜合考查了圓中重要定理,結(jié)合圖形,熟記并靈活應(yīng)用定理是正確解題的基礎(chǔ),而通過倍長(zhǎng)中線,構(gòu)造平行四邊形是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

    已知直線與x軸、y軸分別交干A、B兩點(diǎn).  ∠ABC=60°.BC與x軸交于點(diǎn)C.

(1)試確定直線BC的解析式.

(2)若動(dòng)點(diǎn)P從A點(diǎn)山發(fā)沿AC向點(diǎn)C運(yùn)動(dòng)(不與A、C重舍).同時(shí)動(dòng)點(diǎn)Q從C點(diǎn)出發(fā)沿CBA向點(diǎn)A運(yùn)動(dòng)(不與C、A重合),動(dòng)點(diǎn)P的運(yùn)動(dòng)速度是每秒l個(gè)單位長(zhǎng)度. 動(dòng)點(diǎn)Q的運(yùn)動(dòng)速度是每杪2個(gè)單位長(zhǎng)度.設(shè)△APQ的面積為S.P點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒,求S與t的函數(shù)關(guān)系式,并寫出自變量的取值范圍.

(3)在(2)的條件下.當(dāng)△APQ的面積最大時(shí).y軸上有一點(diǎn)M,平面內(nèi)是否存在一點(diǎn)N,使以A、Q、M、N為頂點(diǎn)的四邊形為菱形?若存在,請(qǐng)直接寫出N點(diǎn)的坐標(biāo):

    若不存在.請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案