【題目】如圖,已知:∠MON=30°,點A 、A 、A…在射線ON上,點B、B、B…在射線OM上,△ABA、△ABA、△ABA …均為等邊三角形,若OA=1,則△A BA 的邊長為____
【答案】32
【解析】
根據(jù)等腰三角形的性質(zhì)以及平行線的性質(zhì)得出AB∥AB∥AB,以及AB=2BA,得出AB=4BA=4,AB=8BA=8,AB=16BA…進而得出答案.
∵△ABA是等邊三角形,
∴AB=AB,∠3=∠4=∠12=60°,
∴∠2=120°,
∵∠MON=30°,
∴∠1=180°120°30°=30°,
又∵∠3=60°,
∴∠5=180°60°30°=90°,
∵∠MON=∠1=30°,
∴OA=AB=1,
∴AB=1,
∵△ABA、△BA是等邊三角形,
∴∠11=∠10=60°,∠13=60°,
∵∠4=∠12=60°,
∴AB∥AB∥AB,
∴∠1=∠6=∠7=30°,∠5=∠8=90°,
∴AB=2BA, AB=4BA,
∴AB=4BA=4,
AB=8BA=8,
AB=16BA=16,
以此類推:A B=32 BA=32.
故答案為:32
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上線段AB=2(單位長度),CD=4(單位長度),點A在數(shù)軸上表示的數(shù)是﹣8,點C 在數(shù)軸上表示的數(shù)是10.若線段AB以6個單位長度/秒的速度向右勻速運動,同時線段CD以2個單位長度/秒的速度也向右勻速運動.
(1)運動t秒后,點B表示的數(shù)是 ;點C表示的數(shù)是 .(用含有t的代數(shù)式表示)
(2)求運動多少秒后,BC=4(單位長度);
(3)P是線段AB上一點,當(dāng)B點運動到線段CD上時,是否存在關(guān)系式,若存在,求線段PD的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一輛摩拜單車放在水平的地面上,車把頭下方A處與坐墊下方B處在平行于地面的水平線上,A、B之間的距離約為49cm,現(xiàn)測得AC、BC與AB的夾角分別為45°與68°,若點C到地面的距離CD為28cm,坐墊中軸E處與點B的距離BE為4cm,求點E到地面的距離(結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知梯形ABCD中,AB∥CD,∠D=90°,BE平分∠ABC,交CD于點E,F(xiàn)是AB的中點,聯(lián)結(jié)AE、EF,且AE⊥BE.
求證:(1)四邊形BCEF是菱形;
(2).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=4,點P從A點出發(fā),按A→B→C的方向在AB和BC上移動.記PA=x,點D到直線PA的距離為y,則y關(guān)于x的函數(shù)大致圖象是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:若線段上的一個點把這條線段分成1:2的兩條線段,則稱這個點是這條線段的三等分點.如圖1,點C在線段AB上,且AC:CB=1:2,則點C是線段AB的一個三等分點,顯然,一條線段的三等分點有兩個.
(1)已知:如圖2,DE=15cm,點P是DE的三等分點,求DP的長.
(2)已知,線段AB=15cm,如圖3,點P從點A出發(fā)以每秒1cm的速度在射線AB上向點B方向運動;點Q從點B出發(fā),先向點A方向運動,當(dāng)與點P重合后立馬改變方向與點P同向而行且速度始終為每秒2cm,設(shè)運動時間為t秒.
①若點P點Q同時出發(fā),且當(dāng)點P與點Q重合時,求t的值.
②若點P點Q同時出發(fā),且當(dāng)點P是線段AQ的三等分點時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:是最大的負(fù)整數(shù),且、b、c滿足(c﹣5)2+|+b|=0,請回答問題.
(1)請直接寫出、b、c的值:= ,b= ,c= .
(2)、b、c所對應(yīng)的點分別為A、B、C,點P為一動點,其對應(yīng)的數(shù)為x,點P在0到1之間運動時(即0 ≤ x ≤ 1時),請化簡式子:|x+1|﹣|x﹣1|+2|x-5|(請寫出化簡過程).
(3)在(1)(2)的條件下,點A、B、C開始在數(shù)軸上運動,若點A以每秒2個單位長度的速度向左運動,同時,點B和點C分別以每秒3個單位長度和8個單位長度的速度向右運動,假設(shè)t秒鐘過后,若點B與點C之間的距離表示為BC,點A與點B之間的距離表示為AB.請問:BC﹣AB的值是否隨著時間t的變化而改變?若變化,請說明理由;若不變,請求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小聰從家里跑步去體育場,在那里鍛煉了一會兒后,又走到文具店去買筆,然后走回家,如圖是小聰離家的距離(單位:)與時間(單位:)的圖象。根據(jù)圖象回答下列問題:
(1)體育場離小聰家______;
(2)小聰在體育場鍛煉了______;
(3)小聰從體育場走到文具店的平均速度是______;
(4)小聰在返回時,何時離家的距離是?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象如圖,則下列結(jié)論中正確的有( )
①a+b+c>0;②a-b+c<0;③b>0;④b=2a;⑤abc<0.
A. 5個 B. 4個 C. 3個 D. 2個
【答案】B
【解析】試題解析:當(dāng)x=1時,y=a+b+c,頂點坐標(biāo)(1,a+b+c),
由圖象可知,頂點坐標(biāo)在第一象限,
∴a+b+c>0,故①正確;
當(dāng)x=-1時,y=a-b+c,
由圖象可知,當(dāng)x=-1時,所對應(yīng)的點在第四象限,
∴y=a-b+c<0,故②正確;
∵圖象開口向下,
∴a<0,
∵x=- =1,
∴b=-2a,故④錯誤;
∴b>0,故③正確;
∵圖象與y軸的交點在y軸的上半軸,
∴c>0,
∴abc<0,故⑤正確;
∴正確的有4個.
故選B.
【題型】單選題
【結(jié)束】
10
【題目】如圖,在△ABC中,∠B=∠C=36°,AB的垂直平分線交BC于點D,交AB于點H,AC的垂直平分線交BC于點E,交AC于點G,連接AD,AE,則下列結(jié)論錯誤的是( )
A. B. AD,AE將∠BAC三等分
C. △ABE≌△ACD D. S△ADH=S△CEG
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com