(2010•保山)如圖,AB∥CD,EF⊥AB于E,EF交CD于F,已知∠2=30°,則∠1是( )

A.20°
B.60°
C.30°
D.45°
【答案】分析:根據(jù)三角形內角之和等于180°,對頂角相等的性質求解.
解答:解:∵AB∥CD,EF⊥AB,
∴EF⊥CD.
∵∠2=30°,
∴∠1=∠3=90°-∠2=60°.
故選B.
點評:考查平行線的性質和三角形內角之和等于180°.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年云南省文山州中考數(shù)學試卷(解析版) 題型:解答題

(2010•保山)如圖,已知直線l的解析式為y=-x+6,它與x軸、y軸分別相交于A、B兩點,平行于直線l的直線n從原點O出發(fā),沿x軸正方向以每秒1個單位長度的速度運動,運動時間為t秒,運動過程中始終保持n∥l,直線n與x軸、y軸分別相交于C、D兩點,線段CD的中點為P,以P為圓心,以CD為直徑在CD上方作半圓,半圓面積為S,當直線n與直線l重合時,運動結束.
(1)求A、B兩點的坐標;
(2)求S與t的函數(shù)關系式及自變量t的取值范圍;
(3)直線n在運動過程中,
①當t為何值時,半圓與直線l相切?
②是否存在這樣的t值,使得半圓面積S=S梯形ABCD?若存在,求出t值.若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2010•保山)如圖,已知直線l的解析式為y=-x+6,它與x軸、y軸分別相交于A、B兩點,平行于直線l的直線n從原點O出發(fā),沿x軸正方向以每秒1個單位長度的速度運動,運動時間為t秒,運動過程中始終保持n∥l,直線n與x軸、y軸分別相交于C、D兩點,線段CD的中點為P,以P為圓心,以CD為直徑在CD上方作半圓,半圓面積為S,當直線n與直線l重合時,運動結束.
(1)求A、B兩點的坐標;
(2)求S與t的函數(shù)關系式及自變量t的取值范圍;
(3)直線n在運動過程中,
①當t為何值時,半圓與直線l相切?
②是否存在這樣的t值,使得半圓面積S=S梯形ABCD?若存在,求出t值.若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年云南省昭通市中考數(shù)學試卷(解析版) 題型:解答題

(2010•保山)如圖,已知直線l的解析式為y=-x+6,它與x軸、y軸分別相交于A、B兩點,平行于直線l的直線n從原點O出發(fā),沿x軸正方向以每秒1個單位長度的速度運動,運動時間為t秒,運動過程中始終保持n∥l,直線n與x軸、y軸分別相交于C、D兩點,線段CD的中點為P,以P為圓心,以CD為直徑在CD上方作半圓,半圓面積為S,當直線n與直線l重合時,運動結束.
(1)求A、B兩點的坐標;
(2)求S與t的函數(shù)關系式及自變量t的取值范圍;
(3)直線n在運動過程中,
①當t為何值時,半圓與直線l相切?
②是否存在這樣的t值,使得半圓面積S=S梯形ABCD?若存在,求出t值.若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年云南省文山州中考數(shù)學試卷(解析版) 題型:解答題

(2010•保山)如圖,?ABCD的兩條對角線AC、BD相交于點O.
(1)圖中有哪些三角形是全等的?
(2)選出其中一對全等三角形進行證明.

查看答案和解析>>

同步練習冊答案