【題目】若一次函數(shù)y=kx+b的自變量的取值范圍是-3≤x≤6,則相應(yīng)函數(shù)值的取值范圍是-5≤y≤-2,這個函數(shù)的解析式為 .
【答案】
【解析】
試題分析:根據(jù)一次函數(shù)的增減性,可知本題分兩種情況:①當(dāng)k>0時,y隨x的增大而增大,把x=-3,y=-5;x=6,y=-2代入一次函數(shù)的解析式y(tǒng)=kx+b,運用待定系數(shù)法即可求出函數(shù)的解析式;②當(dāng)k<0時,y隨x的增大而減小,把x=-3,y=-2;x=6,y=-5代入一次函數(shù)的解析式y(tǒng)=kx+b,運用待定系數(shù)法即可求出函數(shù)的解析式.
分兩種情況:
①當(dāng)k>0時,把x=-3,y=-5;x=6,y=-2代入一次函數(shù)的解析式y(tǒng)=kx+b,
得
解得,
則這個函數(shù)的解析式是;
②當(dāng)k<0時,把x=-3,y=-2;x=6,y=-5代入一次函數(shù)的解析式y(tǒng)=kx+b,
得
解得,
則這個函數(shù)的解析式是;
故這個函數(shù)的解析式是或
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD,點F為正方形ABCD內(nèi)一點,△BFC逆時針旋轉(zhuǎn)后能與△BEA重合.
(1)旋轉(zhuǎn)中心是點 ,旋轉(zhuǎn)角度為 度;
(2)判斷△BEF的形狀為 ;
(3)若∠BFC=90°,說明AE∥BF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1:
(1)求3A+6B;
(2)若3A+6B的值與x無關(guān),求y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形ABCD是菱形,AD=5,過點D作AB的垂線DH,垂足為H,交對角線AC于M,連接BM,且AH=3.
(1)求證:DM=BM;
(2)求MH的長;
(3)如圖2,動點P從點A出發(fā),沿折線ABC方向以2個單位/秒的速度向終點C勻速運動,設(shè)△PMB的面積為S(S≠0),點P的運動時間為t秒,求S與t之間的函數(shù)關(guān)系式;
(4)在(3)的條件下,當(dāng)點P在邊AB上運動時是否存在這樣的 t值,使∠MPB與∠BCD互為余角,若存在,則求出t值,若不存,在請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解答題
(1)如圖1,在平行四邊形ABCD中,已知點E在AB上,點F在CD上,且AE=CF.求證:DE=BF;
(2)如圖2,AB是⊙O的直徑,點C在AB的延長線上,CD與⊙O相切于點D,若∠C=20°,求∠CDA的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)的圖象經(jīng)過點A(2,1),B(﹣1,﹣3).
(1)求此一次函數(shù)的解析式;
(2)求此一次函數(shù)的圖象與x軸、y軸的交點坐標(biāo);
(3)求此一次函數(shù)的圖象與兩坐標(biāo)軸所圍成的三角形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)在,蘇寧商場進行促銷活動,出售一種優(yōu)惠購物卡(注:此卡只作為購物優(yōu)惠憑證不能頂替貨款),花300元買這種卡后,憑卡可在這家商場按標(biāo)價的8折購物.
(1)顧客購買多少元金額的商品時,買卡與不買卡花錢相等?在什么情況下購物合算?
(2)小張要買一臺標(biāo)價為3500元的冰箱,如何購買合算?小張能節(jié)省多少元錢?
(3)小張按合算的方案,把這臺冰箱買下,如果商場還能盈利25%,這臺冰箱的進價是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若x=1,y=,則x2+4xy+4y2的值是( )
A. 2 B. 4 C. 32 D. 12
【答案】B
【解析】解析:x2+4xy+4y2=(x+2y)2==4.故選B.
【題型】單選題
【結(jié)束】
9
【題目】下列因式分解,正確的是( )
A. x2y2-z2=x2(y+z)(y-z) B. -x2y+4xy-5y=-y(x2+4x+5)
C. (x+2)2-9=(x+5)(x-1) D. 9-12a+4a2=-(3-2a)2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com