閱讀以下內(nèi)容:(x-1)(x+1)=x2-1,(x-1)(x2+x+1)=x3-1,(x-1)(x3+x2+x+1)=x4-1,根據(jù)上面的規(guī)律得(x-1)(xn-1+xn-2+xn-3+…+x+1)=________(n為正整數(shù));根據(jù)這一規(guī)律,計算:1+2+22+23+24+…+22010+22011=________.
xn-1 22012-1
分析:根據(jù)式子的特點,右邊多項式的次數(shù)比左邊多項式的次數(shù)大1,根據(jù)規(guī)律求解即可.
解答:(x-1)(x+1)=x2-1,
(x-1)(x2+x+1)=x3-1,
(x-1)(x3+x2+x+1)=x4-1,
…
規(guī)律為左邊都有(x-1)和關于x的多項式,常數(shù)項和每項系數(shù)均為1;
右邊多項式的次數(shù)比左邊多項式的次數(shù)大1.
故(x-1)(xn-1+xn-2+xn-3+…+x+1)=xn-1.
根據(jù)規(guī)律:1+2+22+23+24+…+22010+22111=(22012-1)÷(2-1)=22012-1.
故答案為:xn-1,22012-1.
點評:本題考查了平方差公式,總結(jié)并發(fā)現(xiàn)規(guī)律是解本題的關鍵,對同學們能力要求比較高.