【題目】問(wèn)題情景:如圖1,ABCD,PAB=130°,PCD=120°,求∠APC的度數(shù).

(1)天天同學(xué)看過(guò)圖形后立即口答出:∠APC=110°,請(qǐng)你補(bǔ)全他的推理依據(jù).

如圖2,過(guò)點(diǎn)PPEAB

ABCD,

PEABCD.(___)

∴∠A+APE=180°.

C+CPE=180°.(___)

∵∠PAB=130°,PCD=120°

∴∠APE=50°,CPE=60°

∴∠APC=APE+CPE=110°.(___)

問(wèn)題遷移:

(2)如圖3,ADBC,當(dāng)點(diǎn)PA. B兩點(diǎn)之間運(yùn)動(dòng)時(shí),∠ADP=α,∠BCP=β,求∠CPD與∠α、∠β之間有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由。

(3)(2)的條件下,如果點(diǎn)PA. B兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)A. B. O三點(diǎn)不重合),請(qǐng)你直接寫出∠CPD與∠α、∠β之間的數(shù)量關(guān)系.

【答案】1)平行于同一條直線的兩條直線平行;兩直線平行同旁內(nèi)角互補(bǔ);等量代換;(2)∠CPD =∠α+∠β;(3)∠CPD=∠β∠α,∠CPD=∠α∠β.

【解析】

1)根據(jù)平行線的判定與性質(zhì)填寫即可;

2)過(guò)PPEADCDE,推出ADPEBC,根據(jù)平行線的性質(zhì)得出∠α=DPE,∠β=CPE,即可得出答案;

3)畫出圖形(分兩種情況①點(diǎn)PBA的延長(zhǎng)線上,②點(diǎn)PAB的延長(zhǎng)線上),根據(jù)平行線的性質(zhì)得出∠α=DPE,∠β=CPE,即可得出答案.

(1)過(guò)點(diǎn)PPEAB

ABCD,

PEABCD.(平行于同一條直線的兩條直線平行)

∴∠A+APE=180°.

C+CPE=180°.(兩直線平行同旁內(nèi)角互補(bǔ))

∵∠PAB=130°,PCD=120°

∴∠APE=50°,CPE=60°

∴∠APC=APE+CPE=110°.(等量代換)

故答案為:平行于同一條直線的兩條直線平行;兩直線平行同旁內(nèi)角互補(bǔ);等量代換.

(2)CPD=α+β,

理由是:如圖3,過(guò)PPEADCDE

ADBC,

ADPEBC

∴∠α=DPE,∠β=CPE

∴∠CPD=DPE+CPE=α+β;

(3)當(dāng)PBA延長(zhǎng)線時(shí),

過(guò)PPEADCDE,如圖4

(2)可知:∠α=DPE,∠β=CPE,

∴∠CPD=βα

當(dāng)PAB延長(zhǎng)線時(shí),過(guò)PPEADCDE,如圖5

(2)可知:∠α=DPE,∠β=CPE

∴∠CPD=αβ.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,二次函數(shù)y=ax2x+c的圖象經(jīng)過(guò)點(diǎn)A0,1),B3, ),A點(diǎn)在y軸上,過(guò)點(diǎn)BBCx軸,垂足為點(diǎn)C

(1)求直線AB的解析式和二次函數(shù)的解析式;

(2)點(diǎn)N是二次函數(shù)圖象上一點(diǎn)(點(diǎn)NAB上方),過(guò)NNP⊥x軸,垂足為點(diǎn)P,交AB于點(diǎn)M,求MN的最大值;

(3)點(diǎn)N是二次函數(shù)圖象上一點(diǎn)(點(diǎn)NAB上方),是否存在點(diǎn)N,使得BMNC相互垂直平分?若存在,求出所有滿足條件的N點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】被歷代數(shù)學(xué)家尊為“算經(jīng)之首”的《九章算術(shù)》是中國(guó)古代算法的扛鼎之作!毒耪滤阈g(shù)》中記載:“今有五省、六燕,集稱之衡,雀俱重,燕俱輕,一雀一燕交而處,衡適平。并燕、雀重一斤。問(wèn)燕,雀一枚各重幾何?”譯文:“今有只雀、只燕,分別聚集而且用衡器稱之,聚在一起的雀重,燕輕.將一只雀、一只燕交換位置而放,重量相等.只雀、只燕重量為斤。問(wèn)雀、燕每只各重多少斤?”(每只雀的重量相同、每只燕的重量相同)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,EAD邊的中點(diǎn),BEAC,垂足為點(diǎn)F,連接DF,分析下列四個(gè)結(jié)論:①△AEF∽△CAB;②CF=2AF;③DFDC;④tan∠CAD.其中正確的結(jié)論有( )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖①、圖②是兩張形狀和大小完全相同的方格紙,方格紙中每個(gè)小正方形的邊長(zhǎng)均為1,線段的兩個(gè)端點(diǎn)均在小正方形的頂點(diǎn)上.

1)如圖①,點(diǎn)在小正方形格點(diǎn)上,在圖①中作出點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),連接、,并直接寫出四邊形的周長(zhǎng);

2)在圖②中畫出一個(gè)以線段為一條對(duì)角線、面積為15的菱形,且點(diǎn)和點(diǎn)均在小正方形的頂點(diǎn)上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AD⊥BCBE⊥AC,垂足分別為DE,ADBE相交于點(diǎn)F

1)求證:△ACD∽△BFD

2)當(dāng)tan∠ABD=1,AC=3時(shí),求BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=kx+b經(jīng)過(guò)點(diǎn)A-5,0),B-14

1)求直線AB的表達(dá)式;

2)求直線CEy=-2x-4與直線ABy軸圍成圖形的面積;

3)根據(jù)圖象,直接寫出關(guān)于x的不等式kx+b-2x-4的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,且AB =6,C是⊙O上一點(diǎn),D是的中點(diǎn),過(guò)點(diǎn)D作⊙O的切線,與AB、AC的延長(zhǎng)線分別交于點(diǎn)E、F,連接AD.

(l)求證:AF⊥EF;

(2)填空:

①當(dāng)BE= 時(shí),點(diǎn)C是AF的中點(diǎn);

②當(dāng)BE= 時(shí),四邊形OBDC是菱形,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果的乘積不含項(xiàng),那么值分別是(

A.B.

C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案