【題目】將兩塊相同的含有30°角的三角尺按如圖所示的方式擺放在一起,則四邊形ABCD為平行四邊形,請(qǐng)你寫出判斷的依據(jù)_____

【答案】兩組對(duì)邊分別平行的四邊形是平行四邊形

【解析】

根據(jù)平行四邊形的判定方法即可求解.

解:∵兩塊相同的含有30°角的三角尺

ADBC,ABCD,∠ADB=∠DBC90°,∠ABD=∠BDC30°

ABCDADBC

∴四邊形ABCD是平行四邊形

依據(jù)為:兩組對(duì)邊分別平行的四邊形是平行四邊形;兩組對(duì)邊分別相等的四邊形是平行四邊形

一組對(duì)邊平行且相等的四邊形是平行四邊形(寫出一種即可)

故答案為兩組對(duì)邊分別平行的四邊形是平行四邊形;兩組對(duì)邊分別相等的四邊形是平行四邊形

一組對(duì)邊平行且相等的四邊形是平行四邊形(寫出一種即可)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點(diǎn)C,且ADMND,BEMNE

1)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到①的位置時(shí),求證:①△ADC≌△CEB;②DE=AD+BE;

2)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到②的位置時(shí),求證:DE=ADBE;

3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到③的位置時(shí),試問DE、ADBE具有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出這個(gè)等量關(guān)系,不需要證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn),分別在直線上,若,,可以證明.請(qǐng)完成下面證明過程中的各項(xiàng)填空”.

證明:(理由:______.

______(對(duì)頂角相等)

,(理由:______

______(兩直線平行,同位角相等)

又∵,

______(內(nèi)錯(cuò)角相等,兩直線平行)

(理由:______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】春節(jié)期間,某商場(chǎng)計(jì)劃購(gòu)進(jìn)甲、乙兩種商品,已知購(gòu)進(jìn)甲商品2件和乙商品3件共需270元;購(gòu)進(jìn)甲商品3件和乙商品2件共需230元.

(1)求甲、乙兩種商品每件的進(jìn)價(jià)分別是多少元?

(2)商場(chǎng)決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場(chǎng)需求,需購(gòu)進(jìn)甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請(qǐng)你求出獲利最大的進(jìn)貨方案,并求出最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某綜合實(shí)踐活動(dòng)園區(qū)的門票價(jià)為:成人票50元,學(xué)生票25元,滿40人可以購(gòu)買團(tuán)體票,票價(jià)打9折(不足40人也可按40人計(jì)算),某班在2位老師的帶領(lǐng)下到園區(qū)參加綜合實(shí)踐活動(dòng).

1)如果學(xué)生人數(shù)為38人,買門票至少應(yīng)付多少錢?

2)如果學(xué)生人數(shù)為34人,買門票至少應(yīng)付多少錢?

3)若設(shè)學(xué)生人數(shù)為x人,你能用含x的代數(shù)式表示買門票至少應(yīng)付多少錢嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABD中,∠ABD=90°,AB=1,sin∠ADB=,點(diǎn)EAD的中點(diǎn),線段BA繞點(diǎn)B順時(shí)針旋轉(zhuǎn)到BC(旋轉(zhuǎn)角小于180°),使BCAD.連接DCBE

(1)則四邊形BCDE是________,并證明你的結(jié)論;

(2)求線段AB旋轉(zhuǎn)過程中掃過的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在數(shù)軸上A點(diǎn)表示數(shù)a,B點(diǎn)示數(shù)bC點(diǎn)表示數(shù)c,b是最小的正整數(shù),且a,b滿足 +(c-7)2=0.

(1) a= b= ,c=

(2) 若將數(shù)軸折疊,使得A點(diǎn)與C點(diǎn)重合,則點(diǎn)B與數(shù) 表示的點(diǎn)重合.

(3) 點(diǎn)A,BC開始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)A以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒2個(gè)單位長(zhǎng)度和4個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),假設(shè)t秒鐘過后,若點(diǎn)A與點(diǎn)B之間的距離表示為AB,點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC.則AB= ,AC= ,BC= .(用含t的代數(shù)式表示)

(4) 請(qǐng)問:3BC-2AB的值是否隨著時(shí)間t的變化而改變? 若變化,請(qǐng)說明理由;若不變,請(qǐng)求其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)AB的坐標(biāo)分別為(-2,3)和(1,3),拋物線y=ax2+bx+ca0)的 頂點(diǎn)在線段AB上運(yùn)動(dòng)時(shí),形狀保持不變,且與x軸交于C,D兩點(diǎn)(CD的左側(cè)),給出下列結(jié)論:①c3②當(dāng)x<-3時(shí),yx的增大而增大;③若點(diǎn)D的橫坐標(biāo)最大值為5,則點(diǎn)C的橫坐標(biāo)最小值為-5;④當(dāng)四邊形ACDB為平行四邊形時(shí),a.其中正確的是(

A. ②④ B. ②③ C. ①③④ D. ①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,等邊ABC的邊長(zhǎng)為4cm,動(dòng)點(diǎn)D從點(diǎn)B出發(fā),沿射線BC方向移動(dòng),以AD為邊作等邊ADE

1)在點(diǎn)D運(yùn)動(dòng)的過程中,點(diǎn)E能否移動(dòng)至直線AB上?若能,求出此時(shí)BD的長(zhǎng);若不能,請(qǐng)說明理由;

2)如圖2,在點(diǎn)D從點(diǎn)B開始移動(dòng)至點(diǎn)C的過程中,以等邊ADE的邊AD、DE為邊作ADEF

ADEF的面積是否存在最小值?若存在,求出這個(gè)最小值;若不存在,請(qǐng)說明理由;

若點(diǎn)M、NP分別為AE、AD、DE上動(dòng)點(diǎn),直接寫出MN+MP的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案