(2013•荊州)如圖,在△ABC中,BC>AC,點(diǎn)D在BC上,且DC=AC,∠ACB的平分線CE交AD于E,點(diǎn)F是AB的中點(diǎn),則S△AEF:S四邊形BDEF為( 。
分析:由題意可推出△ADC為等腰三角形,CE為頂角∠ACD的角平分線,所以也是底邊上的中線和高,因此E為AD的中點(diǎn),所以EF為△ABD的中位線,這樣即可判斷出S△AEF:S四邊形BDEF的值.
解答:解:∵DC=AC,
∴△ADC是等腰三角形,
∵∠ACB的平分線CE交AD于E,
∴E為AD的中點(diǎn)(三線合一),
又∵點(diǎn)F是AB的中點(diǎn),
∴EF為△ABD的中位線,
∴EF=
1
2
BD,△AFE∽△ABD,
∵S△AFE:S△ABD=1:4,
∴S△AFE:S四邊形BDEF=1:3,
故選D.
點(diǎn)評(píng):本題主要考查等腰三角形的判定和性質(zhì)、三角形中位線的定義和性質(zhì)、相似三角形的判定和性質(zhì),解題的關(guān)鍵在于求證EF為中位線,S△AFE:S△ABD=1:4.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•荊州)如圖,AB∥CD,∠ABE=60°,∠D=50°,則∠E的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•荊州)如圖,將含60°角的直角三角板ABC繞頂點(diǎn)A順時(shí)針旋轉(zhuǎn)45°度后得到△AB′C′,點(diǎn)B經(jīng)過的路徑為弧BB′,若∠BAC=60°,AC=1,則圖中陰影部分的面積是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•荊州)如圖,在平面直角坐標(biāo)系中,直線y=-3x+3與x軸、y軸分別交于A、B兩點(diǎn),以AB為邊在第一象限作正方形ABCD,點(diǎn)D在雙曲線y=
k
x
(k≠0)上.將正方形沿x軸負(fù)方向平移a個(gè)單位長(zhǎng)度后,點(diǎn)C恰好落在該雙曲線上,則a的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•荊州)如圖,在高度是21米的小山A處測(cè)得建筑物CD頂部C處的仰角為30°,底部D處的俯角為45°,則這個(gè)建筑物的高度CD=
21+7
3
21+7
3
米(結(jié)果可保留根號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案