在梯形ABCD中,ABCD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2.對角線AC和BD相交于點(diǎn)O,等腰直角三角板的直角頂點(diǎn)落在梯形的頂點(diǎn)C上,使三角板繞點(diǎn)C旋轉(zhuǎn).
(1)如圖1,當(dāng)三角板旋轉(zhuǎn)到點(diǎn)E落在BC邊上時(shí),線段DE與BF的位置關(guān)系是______,數(shù)量關(guān)系是______;
(2)繼續(xù)旋轉(zhuǎn)三角板,旋轉(zhuǎn)角為α.請你在圖2中畫出圖形,并判斷(1)中結(jié)論還成立嗎?如果成立請加以證明;如果不成立,請說明理由;
(3)如圖3,當(dāng)三角板的一邊CF與梯形對角線AC重合時(shí),EF與CD相交于點(diǎn)P,若OF=
5
6
,求PE的長.
精英家教網(wǎng)

精英家教網(wǎng)
(1)垂直,相等.
畫圖如右圖(答案不唯一)

(2)(1)中結(jié)論仍成立.
證明如下:
過A作AM⊥DC于M,
則四邊形ABCM為矩形.
∴AM=BC=2,MC=AB=1.
∵DC=2,
DM=
2
2
=1

∴DC=BC.
∵△CEF是等腰直角三角形,
∴∠ECF=90°,CE=CF.
∵∠BCD=∠ECF=90°,
∴∠DCE=∠BCF,
在△DCE和△BCF中,
DC=BC
∠DCE=∠BCF
CE=CF
,
∴△DCE≌△BCF,
∴DE=BF,∠1=∠2,
又∵∠3=∠4,
∴∠5=∠BCD=90°,
∴DE⊥BF,
∴線段DE和BF相等并且互相垂直.

(3)∵ABCD,
∴△AOB△COD,
AB
CD
=
OA
OC
=
OB
OD

∵AB=1,CD=2,
OA
OC
=
OB
OD
=
1
2
,
在Rt△ABC中,
AC=
AB2+BC2
=
1+4
=
5
,
OA=
5
3
,
精英家教網(wǎng)

同理可求得OB=
2
2
3
,
OF=
5
6
,
AF=OA+OF=
5
2
=
AC
2

CE=CF=
5
2

∵BC=CD,∠BCD=90°,
∴∠OBC=45°,
由(2)知△DCE≌△BCF,
∴∠1=∠2,
又∵∠3=∠OBC=45°
∴△CPE△COB,
PE
OB
=
CE
BC
,
PE
2
2
3
=
5
2
2
,
PE=
10
6
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

10、如圖,在梯形ABCD中,若AB∥CD,BD=AD,∠BCD=110°,∠CBD=30°,則∠ADC=
140°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在梯形ABCD中,AB∥CD,E是AB邊上的點(diǎn),給出下面三個(gè)論斷:①AD=BC;②DE=CE;③AE=BE.請你以其中的兩個(gè)論斷為條件,填入“已知”欄中,以一個(gè)論斷作為結(jié)論,填入“求證”欄中,使之成為一個(gè)正確的命題,并證明之.
已知:如圖,在梯形ABCD中,AB∥CD,E是AB邊上的點(diǎn),
AD=BC,AE=BE
AD=BC,AE=BE

求證:
DE=CE
DE=CE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在梯形ABCD中,AD∥BC,AD=AB,過點(diǎn)A作AE∥DB交CB的延長線于點(diǎn)E.
(1)試說明∠ABD=∠CBD.
(2)若∠C=2∠E,試說明AB=DC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在梯形ABCD中,AD∥BC,AB=AD,BD=BC,∠A=100°,則∠BDC的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在梯形ABCD中,AD∥BC,AB=
8
cm,AD=3cm,DC=
5
cm,∠B=45°,點(diǎn)P是下底BC邊上的一個(gè)動(dòng)點(diǎn),從B向C以2cm/s的速度運(yùn)動(dòng),到達(dá)點(diǎn)C時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(s).
(1)求BC的長;
(2)當(dāng)t為何值時(shí),四邊形APCD是等腰梯形;
(3)當(dāng)t為何值時(shí),以A、B、P為頂點(diǎn)的三角形是等腰三角形.

查看答案和解析>>

同步練習(xí)冊答案