在學校田徑運動會上,九年級的一名高個子男生拋實心球,已知實心球所經(jīng)過的路線是某個二次函數(shù)圖象的一部分,如圖所示,如果這個男生的拋球處A點坐標為(0,2),實心球在空中線路的最高點B點的坐標是(6,5).
(1)求這個二次函數(shù)解析式;
(2)若拋出13.5米或大于13.5米遠為“好成績”,問該男生在這次拋擲中,能取得“好成績”嗎?試通過計算說明.(
15
≈3.873)
(1)根據(jù)拋物線的頂點B(6,5)設(shè)拋物線的解析式為y=k(x-6)2+5(k≠0)
將A(0,2)代入解析式解得:k=-
1
12

所以這個二次函數(shù)解析式為:y=-
1
12
(x-6)2+5


(2)令y=0且x>0,
-
1
12
(x-6)2+5
=0,且x>0,
解得:x=6+2
15
≈13.746>13.5
所以該男生在這次拋擲中,能取得“好成績”.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖①,在平面直角坐標系中,Rt△AOB≌Rt△CDA,且A(-1,0)、B(0,2),拋物線y=ax2+ax-2經(jīng)過點C.
(1)求拋物線的解析式;
(2)在拋物線(對稱軸的右側(cè))上是否存在兩點P、Q,使四邊形ABPQ是正方形?若存在,求點P、Q的坐標,若不存在,請說明理由;
(3)如圖②,E為BC延長線上一動點,過A、B、E三點作⊙O′,連接AE,在⊙O′上另有一點F,且AF=AE,AF交BC于點G,連接BF.下列結(jié)論:①BE+BF的值不變;②
BF
AF
=
BG
AG
,其中有且只有一個成立,請你判斷哪一個結(jié)論成立,并證明成立的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直線y=x+m和拋物線y=x2+bx+c都經(jīng)過點A(1,0),B(3,2).
(1)求m的值和拋物線的解析式;
(2)若該拋物線與x軸的另一個交點為C,與y軸交于點D,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=ax2+bx+c的圖象的形狀與拋物線y=-
1
2
x2+1的形狀相同,且經(jīng)過A(2,0)、B(0,-6)兩點.
(1)求這個二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)的對稱軸與x軸交于點C,連接BA、BC,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=ax2+bx-4的圖象與x相交于A、B(點A在B的左邊),與y軸相交于C,拋物線過點A(-1,0)且OB=OC.P是線段BC上的一個動點,過P作直線PE⊥x軸于E,交拋物線于F.
(1)求拋物線的解析式;
(2)若△BPE與△BPF的兩面積之比為2:3時,求E點的坐標;
(3)設(shè)OE=t,△CPE的面積為S,試求出S與t的函數(shù)關(guān)系式;當t為何值時,S有最大值,并求出最大值;
(4)在(3)中,當S取得最大值時,在拋物線上求點Q,使得△QEC是以EC為底邊的等腰三角形,求Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2,以O(shè)為原點,OA所在直線為x軸,建立如圖所示的平面直角坐標系,點B在第一象限內(nèi),將Rt△OAB沿OB折疊后,點A落在第一象限內(nèi)的點C處.
(1)求點C的坐標和過O、C、A三點的拋物線的解析式;
(2)P是此拋物線的對稱軸上一動點,當以P、O、C為頂點的三角形是等腰三角形時,請直接寫出點P的坐標;
(3)M(x,y)是此拋物線上一個動點,當△MOB的面積等于△OAB面積時,求M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某商場將每件進價為60元的某種商品原來按每件100元出售,一天可售出100件.后來經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種商品單價每降低1元,其銷量可增加20件.
(1)求商場經(jīng)營該商品原來一天可獲利潤多少元?
(2)設(shè)后來該商品每件降價x元,商場一天可獲利潤y元.
①若商場經(jīng)營該商品一天要獲利潤7000元,則每件商品應降價多少元?
②求出y與x之間的函數(shù)關(guān)系式,并通過畫該函數(shù)圖象的草圖,觀察其圖象的變化趨勢,結(jié)合題意寫出當x取何值時,商場獲利潤不少于7000元.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)y1=ax2+bx+c(a≠0)和y2=mx+n的圖象交于(-2,-5)點和(1,4)點,并且y1=ax2+bx+c的圖象與y軸交于點(0,3).
(1)求函數(shù)y1和y2的解析式,并畫出函數(shù)示意圖;
(2)x為何值時,①y1>y2;②y1=y2;③y1<y2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某商店購進一批單價為20元的日用商品,如果以單價30元銷售那么半月內(nèi)可售出400件,根據(jù)銷售經(jīng)驗,推廣銷售單價會導致銷售量的減少,即銷售單價每提高1元,銷售量相應減少20件.
(1)銷售單價提高多少元,可獲利4480元.
(2)如何提高售價,才能在半月內(nèi)獲得最大利潤?

查看答案和解析>>

同步練習冊答案