(2006•青海)如圖DE是△ABC的中位線,F(xiàn)是DE的中點,CF的延長線交AB于點G,則AG:GD等于( )

A.2:1
B.3:1
C.3:2
D.4:3
【答案】分析:過E作EM∥AB與GC交于點M,構造全等三角形把DG轉移到和AG有關的中位線處,可得所求線段的比.
解答:解:過E作EM∥AB與GC交于點M,
∴△EMF≌△DGF,
∴EM=GD,
∵DE是中位線,
∴CE=AC,
又∵EM∥AG,
∴△CME∽△CGA,
∴EM:AG=CE:AC=1:2,
又∵EM=GD,
∴AG:GD=2:1.
故選A.
點評:本題考查三角形中位線定理和全等三角形的性質,由中點構造全等三角形,從而將求解同一直線上的兩條線段的比值問題轉化為不共線的兩條線段的比值問題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2006年青海省中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2006•青海)如圖,已知y=x2-ax+a+2與x軸交于A,B兩點,與y軸交于點D(0,8),直線CD平行于x軸,交拋物線于另一點C,動點P以每秒2個單位長度的速度從點C出發(fā),沿C?D運動,同時,點Q以每秒1個單位長度的速度從點A出發(fā),沿A?B運動,連接PQ,CB,設點P的運動時間t秒.(0<t<2).
(1)求a的值;
(2)當t為何值時,PQ平行于y軸;
(3)當四邊形PQBC的面積等于14時,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2006•青海)如圖,已知y=x2-ax+a+2與x軸交于A,B兩點,與y軸交于點D(0,8),直線CD平行于x軸,交拋物線于另一點C,動點P以每秒2個單位長度的速度從點C出發(fā),沿C?D運動,同時,點Q以每秒1個單位長度的速度從點A出發(fā),沿A?B運動,連接PQ,CB,設點P的運動時間t秒.(0<t<2).
(1)求a的值;
(2)當t為何值時,PQ平行于y軸;
(3)當四邊形PQBC的面積等于14時,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年吉林省中考數(shù)學試卷(解析版) 題型:解答題

(2006•青海)如圖,已知y=x2-ax+a+2與x軸交于A,B兩點,與y軸交于點D(0,8),直線CD平行于x軸,交拋物線于另一點C,動點P以每秒2個單位長度的速度從點C出發(fā),沿C?D運動,同時,點Q以每秒1個單位長度的速度從點A出發(fā),沿A?B運動,連接PQ,CB,設點P的運動時間t秒.(0<t<2).
(1)求a的值;
(2)當t為何值時,PQ平行于y軸;
(3)當四邊形PQBC的面積等于14時,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年青海省中考數(shù)學試卷(課標卷)(解析版) 題型:填空題

(2006•青海)如下圖,直線a∥b,則∠A=    度.

查看答案和解析>>

同步練習冊答案