【題目】如圖1,折疊矩形,具體操作:①點為邊上一點(不與、重合),把沿所在的直線折疊,點的對稱點為點;②過點對折,折痕所在的直線交于點、點的對稱點為點.
(1)求證:∽.
(2)若,.
①點在移動的過程中,求的最大值.
②如圖2,若點恰在直線上,連接,求線段的長.
【答案】(1)見解析;(2)①的最大值為;②
【解析】
(1)由矩形和折疊的性質(zhì)可知,然后通過得出,則可證明結(jié)論;
(2)設,則,根據(jù)相似三角形的性質(zhì)有,進而可表示出DG的長度,然后利用二次函數(shù)的性質(zhì)求最大值即可;
(3)連接DH,設,則,先通過勾股定理求出CF,CE,進而在中,利用勾股定理求出x的值,進而可求DE,DG,EG的長度,然后利用求出DM的長度,最后利用即可求解.
(1)∵四邊形ABCD是矩形,
∴ .
由折疊的性質(zhì)可知, ,,
又∵,
∴.
又∵,
∴,
∴.
又∵,
∴∽;
(2)①設,則,
由(1)知:∽
∴,
∴(),
故當時,取到最大值為;
②連接DH,
設,則,
由折疊的性質(zhì)可知,BF=AB=3,BC=5,
在中,
,
∴.
在中,
∵,
∴,
解得,
∴DE=4.
由①知:,
∴.
∵垂直平分DH,
∴DH=2DM,
又∵,
∴,
∴.
科目:初中數(shù)學 來源: 題型:
【題目】某數(shù)學興趣小組學過銳角三角函數(shù)后,到市龍源湖公園測量塑像“夸父追日”的高度,如圖所示,在A處測得塑像頂部D的仰角為45°,塑像底部E的仰角為30.1°,再沿AC方向前進10m到達B處,測得塑像頂部D的仰角為59.1°.求塑像“夸父追日”DE高度.(結(jié)果精確到0.1m.參考數(shù)據(jù):sin30.1°≈0.50,cos30.1°≈0.87,tan30.1°≈0.58,sin59.1°≈0.86,cos59.1°≈0.51,tan59.1°≈1.67)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB為半圓O的直徑,過點B作PB⊥OB,連接AP交半圓O于點C,D為BP上一點,CD是半圓O的切線.
(1)求證:CD=DP.
(2)已知半圓O的直徑為,PC=1,求CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊三角形ABC的AC,BC邊上各取一點P,Q,使AP=CQ,AQ,BP相交于點O.若BO=6,PO=2,則AP的長,AO的長分別為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,AB=3,點E為對角線AC上一點,EF⊥DE交AB于F,若四邊形AFED的面積為4,則四邊形AFED的周長為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】疫情無情人有情,愛心捐款傳真情.疫情期間,某企業(yè)員工積極參加獻愛心活動,該企業(yè)率先捐款的50名員工的捐款情況統(tǒng)計如下表:
金額/元 | 50 | 100 | 200 | 500 | 100 |
人數(shù) | 6 | 17 | 14 | 8 | 5 |
則他們捐款金額的平均數(shù)、中位數(shù)、眾數(shù)分別是( 。
A.276,100,200B.276,200,100C.370,100,100D.370,200,100
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A,B是反比例函數(shù)y=在第一象限內(nèi)的圖象上的兩點,且A,B兩點的橫坐標分別是2和4,則△OAB的面積是( 。
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國第一艘國產(chǎn)航空母艦山東艦2019年12月17日在海南三亞某軍港交付海軍,中國海軍正式邁入雙航母時代.如圖,在一次海上巡航任務中,山東艦由西向東航行,到達處時,測得小島位于它的北偏東方向,再航行一段距離到達處,測得小島位于它的北偏東方向,且與山東艦相距海里。求山東艦從到航行了多少海里?(精確到)(參考數(shù)據(jù):,,,.)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com