觀察下列式子的計(jì)算過(guò)程.
(x+1)(x+2)=x2+3x+2;(x+2)(x+3)=x2+5x+6
(x+3)(x+4)=x2+7x+12;(x+7)(x+8)=x2+15x+56
(1)請(qǐng)你分解因式:①x2+3x+2;②x2+5x+6;③x2+7x+12;④x2+15x+56.
(2)從上述因式分解中,你發(fā)現(xiàn)了怎樣的規(guī)律,試著敘述出來(lái),并用這一規(guī)律對(duì)多項(xiàng)式x2+9x+18分解因式.
分析:(1)根據(jù)已知等式來(lái)分解因式;
(2)利用(1)中的規(guī)律知:二次項(xiàng)的系數(shù)是1;常數(shù)項(xiàng)是兩個(gè)數(shù)的積;一次項(xiàng)系數(shù)是常數(shù)項(xiàng)兩個(gè)因數(shù)的和.由此可以直接將某些二次項(xiàng)的系數(shù)是1的二次三項(xiàng)式因式分解.
解答:解:(1)①x2+3x+2=(x+1)(x+2x);
②x2+5x+6=(x+2)(x+3);
③x2+7x+12=(x+3)(x+4);
④x2+15x+56=(x+7)(x+8);

(2)由(1)知,x2+(p+q)x+pq型的式子的因式分解的特點(diǎn)是:二次項(xiàng)的系數(shù)是1;常數(shù)項(xiàng)是兩個(gè)數(shù)的積;可以直接將某些二次項(xiàng)的系數(shù)是1的二次三項(xiàng)式因式分解:
x2+(p+q)x+pq=(x+p)(x+q);
則x2+9x+18=(x+3)(x+6).
點(diǎn)評(píng):本題考查十字相乘法分解因式,運(yùn)用十字相乘法分解因式時(shí),要注意觀察,嘗試,并體會(huì)它實(shí)質(zhì)是二項(xiàng)式乘法的逆過(guò)程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•濱州)觀察下列各式的計(jì)算過(guò)程:
5×5=0×1×100+25,
15×15=1×2×100+25,
25×25=2×3×100+25,
35×35=3×4×100+25,

請(qǐng)猜測(cè),第n個(gè)算式(n為正整數(shù))應(yīng)表示為
5(2n-1)×5(2n-1)=100n(n-1)+25
5(2n-1)×5(2n-1)=100n(n-1)+25

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年初中畢業(yè)升學(xué)考試(山東濱州卷)數(shù)學(xué)(解析版) 題型:填空題

觀察下列各式的計(jì)算過(guò)程:

5×5=0×1×100+25,

15×15=1×2×100+25,

25×25=2×3×100+25,

35×35=3×4×100+25,

請(qǐng)猜測(cè),第n個(gè)算式(n為正整數(shù))應(yīng)表示為       

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:濱州 題型:填空題

觀察下列各式的計(jì)算過(guò)程:
5×5=0×1×100+25,
15×15=1×2×100+25,
25×25=2×3×100+25,
35×35=3×4×100+25,

請(qǐng)猜測(cè),第n個(gè)算式(n為正整數(shù))應(yīng)表示為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年山東省濱州市中考數(shù)學(xué)試卷(解析版) 題型:填空題

觀察下列各式的計(jì)算過(guò)程:
5×5=0×1×100+25,
15×15=1×2×100+25,
25×25=2×3×100+25,
35×35=3×4×100+25,

請(qǐng)猜測(cè),第n個(gè)算式(n為正整數(shù))應(yīng)表示為   

查看答案和解析>>

同步練習(xí)冊(cè)答案