在直角坐標(biāo)系中,已知點(diǎn)A(-3,2),B(2,-4),在x軸上找一點(diǎn)C,使AC+BC最短,則點(diǎn)C的坐標(biāo)為( 。
A、(0,-
5
8
)
B、(-
4
3
,0)
C、(-4,0)
D、(
4
3
,0)
分析:點(diǎn)A(-3,2)在第二象限,點(diǎn)B(2,-4)在第四象限,連接AB交x軸于C點(diǎn),C點(diǎn)即為所求.根據(jù)A、B兩點(diǎn)的坐標(biāo)求直線(xiàn)AB的解析式,再求C點(diǎn)坐標(biāo).
解答:解:設(shè)直線(xiàn)AB解析式為y=kx+b,
將A(-3,2),B(2,-4)代入,得
-3k+b=2
2k+b=-4
,
解得
k=-
6
5
b=-
8
5

∴y=-
6
5
x-
8
5
,
當(dāng)y=0時(shí),x=-
4
3
,
即C(-
4
3
,0).
故選B.
點(diǎn)評(píng):本題考查了坐標(biāo)系中求最短路線(xiàn)問(wèn)題.當(dāng)已知兩點(diǎn)在x軸兩側(cè)時(shí),直接連接這兩點(diǎn),與x軸的交點(diǎn)即為所求;當(dāng)已知兩點(diǎn)在x軸同側(cè)時(shí),作其中一個(gè)點(diǎn)關(guān)于x軸的對(duì)稱(chēng)點(diǎn),將對(duì)稱(chēng)點(diǎn)與另外一個(gè)點(diǎn)連接,與x軸的交點(diǎn)即為所求.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,已知直線(xiàn)y=kx+6與x軸、y軸分別交于A、B兩點(diǎn),且△ABO的面積為12.
(1)求k的值;
(2)若P為直線(xiàn)AB上一動(dòng)點(diǎn),P點(diǎn)運(yùn)動(dòng)到什么位置時(shí),△PAO是以O(shè)A為底的等腰三角形,求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,連接PO,△PBO是等腰三角形嗎如果是,試說(shuō)明理由,如果不是,請(qǐng)?jiān)诰(xiàn)段AB上求一點(diǎn)C,使得△CBO是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系中,已知點(diǎn)A(-3,0),B(0,-4),C(0,1),過(guò)點(diǎn)C作直線(xiàn)DC交x軸于點(diǎn)D,使得以D、C、O為頂點(diǎn)的三角形與△AOB相似,這樣的直線(xiàn)一共可以作出( 。
A、1條B、2條C、3條D、4條

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•從化市一模)如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-4,0),B(0,3),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形(1)、(2)、(3)、(4)、…,那么第(7)個(gè)三角形的直角頂點(diǎn)的坐標(biāo)是
(24,0)
(24,0)
,第(2013)的直角頂點(diǎn)的坐標(biāo)是
(8052,0)
(8052,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-3,0),B(0,4),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形①、②、③、④…,則三角形精英家教網(wǎng)的直角頂點(diǎn)的坐標(biāo)為
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系中,已知點(diǎn)A(0,
3
)、B(3,0),以AB為一邊作等邊△ABC,且點(diǎn)C在第一象限.則點(diǎn)C的坐標(biāo)是
(3,2
3
(3,2
3
,若G是△ABC的重心,則G的坐標(biāo)是
(2,
3
(2,
3

查看答案和解析>>

同步練習(xí)冊(cè)答案