【題目】如圖,在平面直角坐標(biāo)系中,—拋物線y=﹣a(x+1)(x﹣3)(a>0)與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.拋物線的對(duì)稱軸與x軸交于點(diǎn)E,過(guò)點(diǎn)C作x軸的平行線,與拋物線交于點(diǎn)D,連接DE,延長(zhǎng)DE交y軸于點(diǎn)F,連接AD、AF.
(1)點(diǎn)A的坐標(biāo)為____________,點(diǎn)B的坐標(biāo)為_________ ;
(2)判斷四邊形ACDE的形狀,并給出證明;
(3)當(dāng)a為何值時(shí),△ADF是直角三角形?
【答案】(1)點(diǎn)A(﹣1,0),點(diǎn)B(3,0);(2)四邊形ACDE是平行四邊形.證明見(jiàn)解析;(3)當(dāng)或時(shí),△ADF為直角三角形.
【解析】
(1)根據(jù)拋物線的解析式可知當(dāng)y=0時(shí),x=﹣1或x=3,即可得解;
(2)由(1)可得拋物線對(duì)稱軸為直線x=1,根據(jù)拋物線圖象性質(zhì)易得AE=CD=2,又因?yàn)?/span>,所以四邊形ACDE是平行四邊形;
(3)過(guò)點(diǎn)D作DG⊥AB于點(diǎn)G,通過(guò)“角邊角”易證△OEF ≌△DEG,OF=GD=3a,即F點(diǎn)坐標(biāo)為(0,-3a),①若∠DAF=90°,則∠DAG+∠FAO=90°,然后證明△AOF∽△DGA,得到,然后求得符合題意的a即可;②若∠DFA=90°,則∠DFC+∠AFO=90°,易得OF垂直平分AE,AF=EF,則∠DFC=∠AFO=45°,所以OF=OA,即,a=.
解(1)根據(jù)題意可知,
∵y=﹣a(x+1)(x﹣3),
∴當(dāng)y=0時(shí),x=﹣1或x=3,
∴點(diǎn)A(﹣1,0),點(diǎn)B(3,0);
(2)四邊形ACDE是平行四邊形.
證明如下:令,得,即,
∵點(diǎn)A(﹣1,0),B(3,0),
∴拋物線的對(duì)稱軸為直線x=1,
∴點(diǎn)D(2,3a),E(1,0),
∴AE=CD=2,
又,
∴四邊形ACDE是平行四邊形;
(3)過(guò)點(diǎn)D作DG⊥AB于點(diǎn)G,由,可知OE=GE,
又∵∠FOE=∠DGE=90°,∠OEF=∠GED,
∴△OEF ≌△DEG(ASA),
∴OF=GD=3a,
∴F點(diǎn)坐標(biāo)為(0,-3a),
討論:①若∠DAF=90°,則∠DAG+∠FAO=90°,
又∠FAO+∠AFO=90°,
∴∠DAG=∠AFO,
又∠AOF=∠DGA=90°,
∴△AOF∽△DGA,
∴,
即,
∴,
∵a > 0,
∴,
∵以上各步均可逆,故合題意;
②若∠DFA=90°,則∠DFC+∠AFO=90°,
又∵,
∴OF垂直平分AE,
∴AF=EF,
∴∠DFC=∠AFO=45°,
∴OF=OA,
∴,
∴,
∵以上各步均可逆,故合題意.
綜上,當(dāng)或時(shí),△ADF為直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題發(fā)現(xiàn):如圖①,正方形AEFG的兩邊分別在正方形ABCD的邊AB和AD上,連接CF.
①寫(xiě)出線段CF與DG的數(shù)量關(guān)系;
②寫(xiě)出直線CF與DG所夾銳角的度數(shù).
(2)拓展探究:
如圖②,將正方形AEFG繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),在旋轉(zhuǎn)的過(guò)程中,(1)中的結(jié)論是否仍然成立,請(qǐng)利用圖②進(jìn)行說(shuō)明.
(2)問(wèn)題解決
如圖③,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=4,O為AC的中點(diǎn).若點(diǎn)D在直線BC上運(yùn)動(dòng),連接OE,則在點(diǎn)D的運(yùn)動(dòng)過(guò)程中,線段OE的長(zhǎng)的最小值.(直接寫(xiě)出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】溫州某企業(yè)安排65名工人生產(chǎn)甲、乙兩種產(chǎn)品,每人每天生產(chǎn)2件甲或1件乙,甲產(chǎn)品每件可獲利15元.根據(jù)市場(chǎng)需求和生產(chǎn)經(jīng)驗(yàn),乙產(chǎn)品每天產(chǎn)量不少于5件,當(dāng)每天生產(chǎn)5件時(shí),每件可獲利120元,每增加1件,當(dāng)天平均每件獲利減少2元.設(shè)每天安排x人生產(chǎn)乙產(chǎn)品.
(1)根據(jù)信息填表
產(chǎn)品種類(lèi) | 每天工人數(shù)(人) | 每天產(chǎn)量(件) | 每件產(chǎn)品可獲利潤(rùn)(元) |
甲 | 15 | ||
乙 |
(2)若每天生產(chǎn)甲產(chǎn)品可獲得的利潤(rùn)比生產(chǎn)乙產(chǎn)品可獲得的利潤(rùn)多550元,求每件乙產(chǎn)品可獲得的利潤(rùn).
(3)該企業(yè)在不增加工人的情況下,增加生產(chǎn)丙產(chǎn)品,要求每天甲、丙兩種產(chǎn)品的產(chǎn)量相等.已知每人每天可生產(chǎn)1件丙(每人每天只能生產(chǎn)一件產(chǎn)品),丙產(chǎn)品每件可獲利30元,求每天生產(chǎn)三種產(chǎn)品可獲得的總利潤(rùn)W(元)的最大值及相應(yīng)的x值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,AB⊥BC,BC=5,CD=6,∠DCB=60°,等邊△PMN(N為固定點(diǎn))的邊長(zhǎng)為x,邊MN在直線BC上,NC=8.將直角梯形ABCD繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn)到①的位置,再繞點(diǎn)D1按逆時(shí)針?lè)较蛐D(zhuǎn)到②的位置,如此旋轉(zhuǎn)下去.
(1)將直角梯形按此方法旋轉(zhuǎn)四次,如果等邊△PMN的邊長(zhǎng)為x≥5+3,求梯形與等邊三角形的重疊部分的面積;
(2)將直角梯形按此方法旋轉(zhuǎn)三次,如果梯形與等邊三角形的重疊部分的面積是,求等邊△PMN的邊長(zhǎng)x的范圍.
(3)將直角梯形按此方法旋轉(zhuǎn)三次,如果梯形與等邊三角形的重疊部分的面積是梯形面積的一半,求等邊△PMN的邊長(zhǎng)x.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,—拋物線y=﹣a(x+1)(x﹣3)(a>0)與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.拋物線的對(duì)稱軸與x軸交于點(diǎn)E,過(guò)點(diǎn)C作x軸的平行線,與拋物線交于點(diǎn)D,連接DE,延長(zhǎng)DE交y軸于點(diǎn)F,連接AD、AF.
(1)點(diǎn)A的坐標(biāo)為____________,點(diǎn)B的坐標(biāo)為_________ ;
(2)判斷四邊形ACDE的形狀,并給出證明;
(3)當(dāng)a為何值時(shí),△ADF是直角三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,MN表示一段筆直的高架道路,線段AB表示高架道路旁的一排居民樓,已知點(diǎn)A到MN的距離為15米,BA的延長(zhǎng)線與MN相交于點(diǎn)D,且∠BDN=30°,假設(shè)汽車(chē)在高速道路上行駛時(shí),周?chē)?9米以內(nèi)會(huì)受到噪音(XRS)的影響.
(1)過(guò)點(diǎn)A作MN的垂線,垂足為點(diǎn)H,如果汽車(chē)沿著從M到N的方向在MN上行駛,當(dāng)汽車(chē)到達(dá)點(diǎn)P處時(shí),噪音開(kāi)始影響這一排的居民樓,那么此時(shí)汽車(chē)與點(diǎn)H的距離為多少米?
(2)降低噪音的一種方法是在高架道路旁安裝隔音板,當(dāng)汽車(chē)行駛到點(diǎn)Q時(shí),它與這一排居民樓的距離QC為39米,那么對(duì)于這一排居民樓,高架道路旁安裝的隔音板至少需要多少米長(zhǎng)?(精確到1米)(參考數(shù)據(jù):≈1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校舉行數(shù)學(xué)競(jìng)賽,對(duì)獲一等獎(jiǎng)的學(xué)生獎(jiǎng)勵(lì)數(shù)學(xué)家的著作《好玩的數(shù)學(xué)》,對(duì)獲二等獎(jiǎng)的學(xué)生獎(jiǎng)勵(lì)創(chuàng)意學(xué)生筆記本,若網(wǎng)購(gòu)《好玩的數(shù)學(xué)》14元/本,創(chuàng)意學(xué)生筆記本12元/本,若《好玩的數(shù)學(xué)》數(shù)量比創(chuàng)意學(xué)生筆記本的數(shù)量的一半多5本,買(mǎi)兩種獎(jiǎng)品共用了1020元,購(gòu)買(mǎi)兩種獎(jiǎng)品的數(shù)量各是多少本?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,均勻的正四面體的各面依次標(biāo)有1,2,3,4四個(gè)數(shù)字.小明做了60次投擲試驗(yàn),結(jié)果統(tǒng)計(jì)如下:
朝下數(shù)字 | 1 | 2 | 3 | 4 |
出現(xiàn)的次數(shù) | 16 | 20 | 14 | 10 |
(1)計(jì)算上述試驗(yàn)中“4朝下”的頻率是 ;
(2)隨機(jī)投擲正四面體兩次,請(qǐng)用列表或畫(huà)樹(shù)狀圖法,求兩次朝下的數(shù)字之和大于4的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當(dāng)水面的寬度為10m時(shí),橋洞與水面
的最大距離是5m.
(1)經(jīng)過(guò)討論,同學(xué)們得出三種建立平面直角坐標(biāo)系的方案(如下圖)
你選擇的方案是_____(填方案一,方案二,或方案三),則B點(diǎn)坐標(biāo)是______,求出你所選方案中的拋物線的表達(dá)式;
(2)因?yàn)樯嫌嗡畮?kù)泄洪,水面寬度變?yōu)?/span>6m,求水面上漲的高度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com