【題目】給出下列判斷:

|a|a,則a0;

有理數(shù)包括整數(shù)、0和分數(shù);

任何正數(shù)都大于它的倒數(shù);

④2ax2xy+y2是三次三項式;

幾個有理數(shù)相乘,當負因數(shù)的個數(shù)是奇數(shù)時,積一定為負.

上述判斷正確的有( 。

A. 0B. 1C. 2D. 3

【答案】B

【解析】

根據(jù)絕對值的計算方法、有理數(shù)的分類、倒數(shù)的定義、多項式的定義以及有理數(shù)的乘法法則進行分析.

解:①若|a|a,則a0,故①錯誤;

②有理數(shù)包括整數(shù)和分數(shù),0屬于整數(shù),故②錯誤;

③任何正數(shù)不一定都大于它的倒數(shù),例如:3,故③錯誤;

2ax2xy+y2是三次三項式,故④正確;

⑤幾個不為零的有理數(shù)相乘,當負因數(shù)的個數(shù)是奇數(shù)時,積一定為負數(shù),故⑤錯誤.

綜上所述,正確的判斷有1

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD中,ACBD,ABAD,要使四邊形ABCD是菱形,只需添加一個條件,這個條件可以是_____(只要填寫一種情況).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x﹣4與x軸、y軸分別交于M、N兩點,以坐標原點O為圓心的⊙O半徑為2,將⊙O沿x軸向右平移,當⊙O恰好與直線MN相切時,平移的最小距離為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】決心試一試,請閱讀下列材料:計算:

解法一:原式=

=

=

解法二:原式=

=

=

=

解法三:原式的倒數(shù)為:

=

=﹣20+3﹣5+12

=﹣10

故原式 =

上述得出的結(jié)果不同,肯定有錯誤的解法,你認為解法 是錯誤的,在正確的解法中,你認為解法 最簡捷.然后請解答下列問題,計算:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCDCEAB于點F,若∠E=20°C=45°,則∠A的度數(shù)為(  )

A. B. 15° C. 25° D. 35°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,AB=13,AD=10,將ABCD沿AE翻折后,點B恰好與點C重合,則點C到AD的距離為(
A.5
B.12
C.3
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=AC,BAC=100°,點D在BC邊上,ABD和AFD關(guān)于直線AD對稱,FAC的平分線交BC于點G,連接FG.

(1)求DFG的度數(shù);

(2)設(shè)BAD=θ,

當θ為何值時,DFG為等腰三角形;

DFG有可能是直角三角形嗎?若有,請求出相應(yīng)的θ值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖,紙片□ABCD中,AD=5,S□ABCD=15,過點AAEBC,垂足為E,沿AE剪下△ABE,將它平移至△DCE'的位置,拼成四邊形AEE'D,則四邊形AEE'D的形狀為( )

A.平行四邊形 B.菱形 C.矩形 D.正方形

(2)如圖,在(1)中的四邊形紙片AEE'D中,在EE'上取一點F,使EF=4,剪下△AEF,剪下△AEF,將它平移至△DE'F'的位置,拼成四邊形AFF'D

①求證:四邊形AFF'D是菱形;

②求四邊形AFF'D的兩條對角線的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖8中圖,兩個等邊ABD,CBD的邊長均為1,將ABD沿AC方向向

右平移到ABD的位置得到圖,則陰影部分的周長為_________

查看答案和解析>>

同步練習(xí)冊答案