如圖,⊙O1和⊙O2相交于A、B兩點,動點P在⊙O2上,且在⊙O1外,直線PA、PB分別交⊙O1于C、D,問:⊙O1的弦CD的長是否隨點P的運動而發(fā)生變化?如果發(fā)生變化,請你確定CD最長和最短時P的位置,如果不發(fā)生變化,請你給出證明。
解:當點P運動時,CD的長保持不變.理由如下:
連結AD
∵A、B是⊙O與⊙O的交點,
∴弦AB與點P的位置關系無關
∵∠ADP在⊙O中所對的弦為AB,
∴∠ADP為定值
∵∠P在⊙O中所對的弦為AB,
∴∠P為定值
∵∠CAD =∠ADP+∠P,
∴∠CAD為定值,在⊙O中∠CAD對弦CD
∴CD的長與點P的位置無關。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

20、已知:如圖,⊙O1和⊙O2相交于A、B兩點,動點P在⊙O2上,且在⊙1外,直線PA、PB分別交⊙O1于C、D,問:⊙O1的弦CD的長是否隨點P的運動而發(fā)生變化?如果發(fā)生變化,請你確定CD最長和最短時P的位置,如果不發(fā)生變化,請你給出證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,⊙O1和⊙O2相交于A、B兩點,過B點作⊙O1的切線交⊙O2于D點,連接DA并延精英家教網(wǎng)長⊙O1相交于C點,連接BC,過A點作AE∥BC與⊙O相交于E點,與BD相交于F點.
(1)求證:EF•BC=DE•AC;
(2)若AD=3,AC=1,AF=
3
,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,⊙O1和⊙O2相交于A、B兩點,⊙O1的弦AC與⊙O2相切,P是
AmC
的中點,PA精英家教網(wǎng)、PB的延長線分別交⊙O2于點E、F,PB交AC于D.
(1)求證:PC∥AF;
(2)求證:AE•PC=BE•PD;
(3)若A是PE的中點,則⊙O1與⊙O2是否是等圓?若不是等圓,請說明理由;若是等圓,請給出證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

16、如圖.⊙O1和⊙O2外切于點A,BC是⊙O1和⊙O2的公切線,B、C為切點,求證:AB⊥AC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2001•黃岡)已知,如圖,⊙O1和⊙O2內切于點P,過點P的直線交⊙O1于點D,交⊙O2于點E;DA與⊙O2相切,切點為C.
(1)求證:PC平分∠APD;
(2)PE=3,PA=6,求PC的長.

查看答案和解析>>

同步練習冊答案