【題目】如圖,拋物線軸分別交于點(diǎn),,與軸交于點(diǎn),頂點(diǎn)為,對(duì)稱軸交軸于點(diǎn)

1)求拋物線的解析式.

2)若點(diǎn)是拋物線的對(duì)稱軸上的一點(diǎn),以點(diǎn)為圓心的圓經(jīng)過,兩點(diǎn),且與直線相切,求點(diǎn)的坐標(biāo).

3)在拋物線的對(duì)稱軸上是否存在一點(diǎn),使得相似?如果存在,求出點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說明理由.

【答案】1;(2)點(diǎn)的坐標(biāo)為;(3)存在,點(diǎn)的坐標(biāo)為

【解析】

1)由題意把點(diǎn)A、點(diǎn)B的坐標(biāo)代入拋物線解析式,用待定系數(shù)法可得到二次函數(shù)的表達(dá)式;

2)根據(jù)題意設(shè)直線CD切⊙P于點(diǎn)E.連結(jié)PE、PA,作CFDQ于點(diǎn)F.通過DFCF的長,說明△DCF為等腰直角三角形.設(shè)點(diǎn)P1,m),用含m的代數(shù)式表示出半徑EP、PA的長,根據(jù)半徑間關(guān)系,求出m的值從而確定點(diǎn)P的坐標(biāo).

3)根據(jù)題意利用等腰直角三角形,先求出DCBC的長,由于∠CBQ=CDM,若△DCM與△BQC相似,分兩種情況,利用比例線段求出滿足條件的點(diǎn)M的坐標(biāo)即可.

解:(1,在拋物線上,

代入,得,

解得

拋物線的解析式為

2)如圖1,設(shè)直線于點(diǎn),連接,作于點(diǎn)

,得對(duì)稱軸為直線,

,,

為等腰直角三角形,

,

為等腰直角三角形.

設(shè),則

中,,

整理,得,

解得

點(diǎn)的坐標(biāo)為

3)存在點(diǎn),使得

如圖2,連接,,

,

為等腰直角三角形,

由(2)可知,

相似有兩種情況,

當(dāng)時(shí),,解得,

當(dāng)時(shí),,解得,

,

綜上,點(diǎn)的坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著某市養(yǎng)老機(jī)構(gòu)(養(yǎng)老機(jī)構(gòu)指社會(huì)福利院、養(yǎng)老院、社區(qū)養(yǎng)老中心等)建設(shè)穩(wěn)步推進(jìn),擁有的養(yǎng)老床位及養(yǎng)老建筑不斷增加.

1)該市的養(yǎng)老床位數(shù)從2017年底的2萬個(gè)增長到2019年底的2.88萬個(gè),求該市這兩年(從2017年底到2019年底)擁有的養(yǎng)老床位數(shù)的平均年增長率;

2)該市某社區(qū)今年準(zhǔn)備新建一養(yǎng)老中心,如果計(jì)劃贍養(yǎng)200名老人,建筑投入平均5萬元/人,且計(jì)劃贍養(yǎng)的老人每增加5人,建筑投入平均減少1000/人,那么新建該養(yǎng)老中心需申報(bào)的最高建筑投入是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸交于點(diǎn),與軸交于點(diǎn),將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)90°得到線段,反比例函數(shù)的圖象經(jīng)過點(diǎn)

1)求直線和反比例函數(shù)的解析式;

2)已知點(diǎn)是反比例函數(shù)圖象上的一個(gè)動(dòng)點(diǎn),求點(diǎn)到直線距離最短時(shí)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系中,拋物線軸交于兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),與軸交于點(diǎn),頂點(diǎn)為

1)如圖,直線下方拋物線上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)重合),過點(diǎn)于點(diǎn),當(dāng)最大時(shí),點(diǎn)為線段一點(diǎn)(不與點(diǎn)重合),當(dāng)的值最小時(shí),求點(diǎn)的坐標(biāo);

2)將沿直線翻折得,再將繞著點(diǎn)順時(shí)針旋轉(zhuǎn),在旋轉(zhuǎn)過程中直線與直線相交于點(diǎn),與軸相交于點(diǎn),當(dāng)是等腰三角形時(shí),求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),已知小正方形ABCD的面積為1,把它的各邊延長一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1邊長按原法延長一倍得到正方形A2B2C2D2(如圖(2));正方形A2B2C2D2的面積為________,以此下去,則正方形AnBnCnDn的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,從點(diǎn)看一山坡上的電線桿,觀測(cè)點(diǎn)的仰角是,向前走到達(dá)點(diǎn), 測(cè)得頂端點(diǎn)和桿底端點(diǎn)的仰角分別是,則該電線桿的高度(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,將繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn),得到

1)如圖 1,當(dāng)點(diǎn)在線段的延長線上時(shí),求的度數(shù);

2)如圖 2,連接.若的面積為 3,求的面積;

3)如圖 3,點(diǎn)為線段中點(diǎn),點(diǎn)是線段上的動(dòng)點(diǎn),在繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)的過程中,點(diǎn)的對(duì)應(yīng)點(diǎn)是點(diǎn),求線段長度的最大值與最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:數(shù)學(xué)課上,老師出示了這樣一個(gè)問題:

如圖1,在等邊中,點(diǎn)、上,且,直線點(diǎn),交延長線于點(diǎn),且,探究線段之間的數(shù)量關(guān)系,并證明.

某學(xué)習(xí)小組的同學(xué)經(jīng)過思考,交流了自己的想法:

小明:通過觀察和度量,發(fā)現(xiàn)存在某種數(shù)量關(guān)系

小強(qiáng):通過觀察和度量,發(fā)現(xiàn)圖1中有一條線段與相等;

小偉:通過構(gòu)造三角形,證明三角形全等,進(jìn)而可以得到線段之間的數(shù)量關(guān)系

……

老師:保留原題條件,再過點(diǎn)相交于點(diǎn)(如圖2)如果給出的值,那么可以求出的值

請(qǐng)回答:

1)在圖1中找出數(shù)量關(guān)系,并證明;

2)在圖1中找出與線段相等的線段,并證明;

3)探究線段之間的數(shù)量關(guān)系,并證明;

4)若,求的值(用含的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,上一動(dòng)點(diǎn),點(diǎn)從點(diǎn)以1個(gè)單位/秒的速度向點(diǎn)運(yùn)動(dòng),遠(yuǎn)動(dòng)到點(diǎn)即停止,經(jīng)過點(diǎn)作,交于點(diǎn),以為一邊在一側(cè)作正方形,在點(diǎn)運(yùn)動(dòng)過程中,設(shè)正方形的重疊面積為,運(yùn)動(dòng)時(shí)間為秒,如圖2的函數(shù)圖象.

1)求的長;

2)求的值;

3)求的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案