(2009•黔東南州)如圖,l1,l2,l3,l4是同一平面內的四條平行直線,且每相鄰的兩條平行直線間的距離為h,正方形ABCD的四個頂點分別在這四條直線上,且正方形ABCD的面積是25.
(1)連接EF,證明△ABE、△FBE、△EDF、△CDF的面積相等.
(2)求h的值.

【答案】分析:(1)△ABE和△FBE同底同高,因而面積相等,同理△FBE和△EDF的面積相等,△EDF和△CDF的面積相等,因而△ABE、△FBE、△EDF、△CDF的面積相等.
(2)根據(jù)正方形的面積就可以求出邊長,得到AE,AB的長,根據(jù)勾股定理得到BE的長,△ABE的面積是長方形的面積的,再根據(jù)三角形的面積等于BE•h就可以求出h的長.
解答:(1)證明:連接EF,
∵l1∥l2∥l3∥l4,且四邊形ABCD是正方形,
∴BE∥FD,BF∥ED,
∴四邊形EBFD為平行四邊形,
∴BE=FD,(2分)
又∵l1、l2、l3和l4之間的距離為h,
∴S△ABE=BE•h,S△FBE=BE•h,
S△EDF=FD•h,S△CDF=FD•h,
∴S△ABE=S△FBE=S△EDF=S△CDF.(4分)

(2)解:過A點作AH⊥BE于H點,過E點作EM⊥FD于M點,
方法一:∵S△ABE=S△FBE=S△EDF=S△CDF,
又∵正方形ABCD的面積是25,
∴S△ABE=,且AB=AD=5,(7分)
又∵l1∥l2∥l3∥l4,每相鄰的兩條平行直線間的距離為h,
∴AH=EM=h,
∵AH⊥l2,EM⊥l3,l2∥l3
∴∠3=∠4=90°,AH∥EM,
∴∠1=∠2,
∴△AHE≌△EMD,
∴AE=DE,
同理:BF=FC,
∴E、F分別是AD與BC的中點,
∴AE=AD=,
∴在Rt△ABE中,
BE==,(10分)
又∵AB•AE=BE•AH,
.(12分)
方法二:不妨設BE=FD=x(x>0),
則S△ABE=S△FBE=S△EDF=S△CDF=,(6分)
又∵正方形ABCD的面積是25,
∴S△ABE=xh=,且AB=5,
則xh=①,(8分)
又∵在Rt△ABE中:AE=,
又∵∠BAE=90°,AH⊥BE,
∴Rt△ABE∽Rt△HAE,
,即
變形得:(hx)2=25(x2-52)②(10分),
把①兩邊平方后代入②得:=25(x2-52)③,
解方程③得x=(x=-舍去),
把x=代入①得:h=.(12分)
點評:本題主要考查了勾股定理,根據(jù)三角形的面積公式得到四個三角形的面積相等是解決本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2009•黔東南州)下列運算正確的是(  )

查看答案和解析>>

科目:初中數(shù)學 來源:2011年江蘇省蘇州市張家港二中中考數(shù)學一模試卷(解析版) 題型:填空題

(2009•黔東南州)二次函數(shù)y=x2-2x-3的圖象關于原點O(0,0)對稱的圖象的解析式是   

查看答案和解析>>

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2009•黔東南州)已知二次函數(shù)y=x2+ax+a-2.
(1)求證:不論a為何實數(shù),此函數(shù)圖象與x軸總有兩個交點;
(2)設a<0,當此函數(shù)圖象與x軸的兩個交點的距離為時,求出此二次函數(shù)的解析式;
(3)若此二次函數(shù)圖象與x軸交于A、B兩點,在函數(shù)圖象上是否存在點P,使得△PAB的面積為?若存在,求出P點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年貴州省黔東南州中考數(shù)學試卷(解析版) 題型:解答題

(2009•黔東南州)已知二次函數(shù)y=x2+ax+a-2.
(1)求證:不論a為何實數(shù),此函數(shù)圖象與x軸總有兩個交點;
(2)設a<0,當此函數(shù)圖象與x軸的兩個交點的距離為時,求出此二次函數(shù)的解析式;
(3)若此二次函數(shù)圖象與x軸交于A、B兩點,在函數(shù)圖象上是否存在點P,使得△PAB的面積為?若存在,求出P點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年貴州省黔東南州中考數(shù)學試卷(解析版) 題型:填空題

(2009•黔東南州)二次函數(shù)y=x2-2x-3的圖象關于原點O(0,0)對稱的圖象的解析式是   

查看答案和解析>>

同步練習冊答案