如圖,已知拋物線(xiàn)經(jīng)過(guò)點(diǎn)A(-1,0)、B(3,0)、C(0,3)三點(diǎn).
(1)求拋物線(xiàn)的解析式.
(2)點(diǎn)M是線(xiàn)段BC上的點(diǎn)(不與B,C重合),過(guò)M作MN∥y軸交拋物線(xiàn)于N,若點(diǎn)M的橫坐標(biāo)為m,請(qǐng)用m的代數(shù)式表示MN的長(zhǎng).
(3)在(2)的條件下,連接NB、NC,是否存在m,使△BNC的面積最大?若存在,求m的值;若不存在,說(shuō)明理由.

【答案】分析:(1)已知了拋物線(xiàn)上的三個(gè)點(diǎn)的坐標(biāo),直接利用待定系數(shù)法即可求出拋物線(xiàn)的解析式.
(2)先利用待定系數(shù)法求出直線(xiàn)BC的解析式,已知點(diǎn)M的橫坐標(biāo),代入直線(xiàn)BC、拋物線(xiàn)的解析式中,可得到M、N點(diǎn)的坐標(biāo),N、M縱坐標(biāo)的差的絕對(duì)值即為MN的長(zhǎng).
(3)設(shè)MN交x軸于D,那么△BNC的面積可表示為:S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN•OB,MN的表達(dá)式在(2)中已求得,OB的長(zhǎng)易知,由此列出關(guān)于S△BNC、m的函數(shù)關(guān)系式,根據(jù)函數(shù)的性質(zhì)即可判斷出△BNC是否具有最大值.
解答:解:(1)設(shè)拋物線(xiàn)的解析式為:y=a(x+1)(x-3),則:
a(0+1)(0-3)=3,a=-1;
∴拋物線(xiàn)的解析式:y=-(x+1)(x-3)=-x2+2x+3.

(2)設(shè)直線(xiàn)BC的解析式為:y=kx+b,則有:
,
解得
故直線(xiàn)BC的解析式:y=-x+3.
已知點(diǎn)M的橫坐標(biāo)為m,則M(m,-m+3)、N(m,-m2+2m+3);
∴故MN=-m2+2m+3-(-m+3)=-m2+3m(0<m<3).

(3)如圖;
∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN•OB,
∴S△BNC=(-m2+3m)•3=-(m-2+(0<m<3);
∴當(dāng)m=時(shí),△BNC的面積最大,最大值為
點(diǎn)評(píng):該二次函數(shù)題較為簡(jiǎn)單,考查的知識(shí)點(diǎn)有:函數(shù)解析式的確定、函數(shù)圖象交點(diǎn)坐標(biāo)的求法、二次函數(shù)性質(zhì)的應(yīng)用以及圖形面積的解法.(3)的解法較多,也可通過(guò)圖形的面積差等方法來(lái)列函數(shù)關(guān)系式,可根據(jù)自己的習(xí)慣來(lái)選擇熟練的解法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線(xiàn)經(jīng)過(guò)原點(diǎn)O和x軸上另一點(diǎn)A,它的對(duì)稱(chēng)軸x=-2與x軸交于點(diǎn)C,直線(xiàn)y=-精英家教網(wǎng)2x+1經(jīng)過(guò)拋物線(xiàn)上一點(diǎn)B(2,m),且與y軸.直線(xiàn)x=-2分別交于點(diǎn)D、E.
(1)求m的值及該拋物線(xiàn)對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)①判斷△CBE的形狀,并說(shuō)明理由;②判斷CD與BE的位置關(guān)系;
(3)若P(x,y)是該拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),是否存在這樣的點(diǎn)P,使得PB=PE?若存在,試求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•衡陽(yáng))如圖,已知拋物線(xiàn)經(jīng)過(guò)A(1,0),B(0,3)兩點(diǎn),對(duì)稱(chēng)軸是x=-1.
(1)求拋物線(xiàn)對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度在線(xiàn)段OA上運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)M從O點(diǎn)出發(fā)以每秒3個(gè)單位長(zhǎng)度的速度在線(xiàn)段OB上運(yùn)動(dòng),過(guò)點(diǎn)Q作x軸的垂線(xiàn)交線(xiàn)段AB于點(diǎn)N,交拋物線(xiàn)于點(diǎn)P,設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
①當(dāng)t為何值時(shí),四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線(xiàn)經(jīng)過(guò)原點(diǎn)O和x軸上另一點(diǎn)A,它的對(duì)稱(chēng)軸x=2與x軸交于點(diǎn)C,直線(xiàn)y=-2x-1經(jīng)過(guò)拋物線(xiàn)上一點(diǎn)B(-2,m),且與y軸、直線(xiàn)x=2分別交于點(diǎn)D、E,
(1)求m的值及該拋物線(xiàn)對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)求證:①CB=CE;②D是BE的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線(xiàn)經(jīng)過(guò)坐標(biāo)原點(diǎn),與x軸的另一個(gè)交點(diǎn)為A,且頂點(diǎn)M坐標(biāo)為(1,2),
(1)求該拋物線(xiàn)的解析式;
(2)現(xiàn)將它向右平移m(m>0)個(gè)單位,所得拋物線(xiàn)與x軸交于C、D兩點(diǎn),與原拋物線(xiàn)交于點(diǎn)P,△CDP的面積為S,求S關(guān)于m的關(guān)系式;
(3)當(dāng)m=2時(shí),點(diǎn)Q為平移后的拋物線(xiàn)的一動(dòng)點(diǎn),是否存在這樣的⊙Q,使得⊙Q與兩坐標(biāo)軸都相切?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線(xiàn)經(jīng)過(guò)原點(diǎn)O和x軸上的另一點(diǎn)E,頂點(diǎn)為M(2,4),矩形ABCD的頂點(diǎn)A與O重合,AD,AB分別在x,y軸上,且AD=2,AB=3.
(1)求該拋物線(xiàn)對(duì)應(yīng)的函數(shù)解析式;
(2)現(xiàn)將矩形ABCD以每秒1個(gè)單位長(zhǎng)度的速度從左圖所示位置沿x軸的正方向勻速平行移動(dòng);同時(shí)AB上一動(dòng)點(diǎn)P也以相同的速度從點(diǎn)A出發(fā)向B勻速運(yùn)動(dòng),設(shè)它們的運(yùn)動(dòng)時(shí)間為t秒(0≤t≤3),直線(xiàn)AB與拋物線(xiàn)的交點(diǎn)為N,設(shè)多邊形PNCD的面積為S,試探究S是否存在最大值?若存在,求出這個(gè)最大值;若不存在,說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案