如圖1,線段PB過圓心O,交⊙OA、B兩點,PC切⊙O于點C,過點AADPC,垂足為D,連接AC、BC

(1)寫出圖1中所有相等的角(直角除外),并給出證明;

(2)若圖1中的切線PC變?yōu)閳D2中的割線PE,且PE與⊙O交于C、E兩點,AEBC交于點M,ADPE,寫出圖2中相等的角(寫出三組即可,直角除外);

(3)在圖2中,證明:AD·ABAC·AE

答案:
解析:

  

  


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖1,線段PB過圓心O,交圓O于A,B兩點,PC切圓O于點C,作AD⊥PC,垂足為D,連接AC,BC.
(1)寫出圖1中所有相等的角(直角除外),并給出證明;
(2)若圖1中的切線PC變?yōu)閳D2中割線PCE的情形,PCE與圓O交于C,E兩精英家教網點,AE與BC交于點M,AD⊥PE,寫出圖2中相等的角(寫出三組即可,直角除外);
(3)在圖2中,證明:AD•AB=AC•AE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖1,線段PB過圓心O,交圓O于A,B兩點,PC切圓O于點C,作AD⊥PC,垂足為D,連接AC,BC.
(1)寫出圖1中所有相等的角(直角除外),并給出證明;
(2)若圖1中的切線PC變?yōu)閳D2中割線PCE的情形,PCE與圓O交于C,E兩點,AE與BC交于點M,AD⊥PE,寫出圖2中相等的角(寫出三組即可,直角除外);
(3)在圖2中,證明:AD•AB=AC•AE.

查看答案和解析>>

科目:初中數(shù)學 來源:第3章《圓》中考題集(52):3.5 直線和圓的位置關系(解析版) 題型:解答題

如圖1,線段PB過圓心O,交圓O于A,B兩點,PC切圓O于點C,作AD⊥PC,垂足為D,連接AC,BC.
(1)寫出圖1中所有相等的角(直角除外),并給出證明;
(2)若圖1中的切線PC變?yōu)閳D2中割線PCE的情形,PCE與圓O交于C,E兩點,AE與BC交于點M,AD⊥PE,寫出圖2中相等的角(寫出三組即可,直角除外);
(3)在圖2中,證明:AD•AB=AC•AE.

查看答案和解析>>

科目:初中數(shù)學 來源:第28章《圓》中考題集(59):28.2 與圓有關的位置關系(解析版) 題型:解答題

如圖1,線段PB過圓心O,交圓O于A,B兩點,PC切圓O于點C,作AD⊥PC,垂足為D,連接AC,BC.
(1)寫出圖1中所有相等的角(直角除外),并給出證明;
(2)若圖1中的切線PC變?yōu)閳D2中割線PCE的情形,PCE與圓O交于C,E兩點,AE與BC交于點M,AD⊥PE,寫出圖2中相等的角(寫出三組即可,直角除外);
(3)在圖2中,證明:AD•AB=AC•AE.

查看答案和解析>>

科目:初中數(shù)學 來源:第3章《直線與圓、圓與圓的位置關系》中考題集(25):3.1 直線與圓的位置關系(解析版) 題型:解答題

如圖1,線段PB過圓心O,交圓O于A,B兩點,PC切圓O于點C,作AD⊥PC,垂足為D,連接AC,BC.
(1)寫出圖1中所有相等的角(直角除外),并給出證明;
(2)若圖1中的切線PC變?yōu)閳D2中割線PCE的情形,PCE與圓O交于C,E兩點,AE與BC交于點M,AD⊥PE,寫出圖2中相等的角(寫出三組即可,直角除外);
(3)在圖2中,證明:AD•AB=AC•AE.

查看答案和解析>>

同步練習冊答案