精英家教網 > 初中數學 > 題目詳情
(2006•北京)已知:關于x的方程mx2-14x-7=0有兩個實數根x1和x2,關于y的方程y2-2(n-1)y+n2-2n=0有兩個實數根y1和y2,且-2≤y1<y2≤4.當+2(2y1-y22)+14=0時,求m的取值范圍.
【答案】分析:由于兩個方程都有根,可以利用它們的判別式△求出m,n的取值范圍.再由根與系數的關系和已知條件得出m,n的關系式,
解答:解:∵方程mx2-14x-7=0有兩個實數根,則△=196+28m≥0,
∴m≥-7,且m≠0,①
∵方程y2-2(n-1)y+n2-2n=0有兩個實數根,則△=4(n-1)2-4(n2-2n)=4>0,
分解因式得,(y-n+2)(y-n)=0,
∴y1=n-2,y2=n,
∵-2≤y1<y2≤4,
∴-2≤n-2<n≤4,
解得,0≤n≤4,
∵x1+x2=,x1x2=-,
+2(2y1-y22)+14=0變形為
++2[2(n-2)-n2]+14=0,
化簡得,m=2n2-4n-6.
由二次函數的圖象知,
當0≤n≤4時,-8≤m≤10,②
由①②得:-7≤m≤10,且m≠0.
點評:本題利用了一元二次方程的根與系數的關系和根的判別式及用圖象來解題,正確確定m、n的范圍是解決本題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源:2011年3月九年級質量監(jiān)測數學試卷(解析版) 題型:解答題

(2006•北京)已知拋物線y=ax2+bx+c與y軸交于點A(0,3),與x軸分別交于B(1,0)、C(5,0)兩點.
(1)求此拋物線的解析式;
(2)若點D為線段OA的一個三等分點,求直線DC的解析式;
(3)若一個動點P自OA的中點M出發(fā),先到達x軸上的某點(設為點E),再到達拋物線的對稱軸上某點(設為點F),最后運動到點A′求使點P運動的總路徑最短的點E、點F的坐標,并求出這個最短總路徑的長.

查看答案和解析>>

科目:初中數學 來源:2006年全國中考數學試題匯編《二次函數》(10)(解析版) 題型:解答題

(2006•北京)已知拋物線y=ax2+bx+c與y軸交于點A(0,3),與x軸分別交于B(1,0)、C(5,0)兩點.
(1)求此拋物線的解析式;
(2)若點D為線段OA的一個三等分點,求直線DC的解析式;
(3)若一個動點P自OA的中點M出發(fā),先到達x軸上的某點(設為點E),再到達拋物線的對稱軸上某點(設為點F),最后運動到點A′求使點P運動的總路徑最短的點E、點F的坐標,并求出這個最短總路徑的長.

查看答案和解析>>

科目:初中數學 來源:2006年全國中考數學試題匯編《二次函數》(10)(解析版) 題型:解答題

(2006•北京)已知:拋物線y=-x2+mx+2m2(m>0)與x軸交于A、B兩點,點A在點B的左邊,C是拋物線上一個動點(點C與點A、B不重合),D是OC的中點,連接BD并延長,交AC于點E.
(1)用含m的代數式表示點A、B的坐標;
(2)求的值;
(3)當C、A兩點到y(tǒng)軸的距離相等,且S△CED=時,求拋物線和直線BE的解析式.

查看答案和解析>>

科目:初中數學 來源:2010年北京市密云縣中考數學二模試卷(解析版) 題型:解答題

(2006•北京)已知:拋物線y=-x2+mx+2m2(m>0)與x軸交于A、B兩點,點A在點B的左邊,C是拋物線上一個動點(點C與點A、B不重合),D是OC的中點,連接BD并延長,交AC于點E.
(1)用含m的代數式表示點A、B的坐標;
(2)求的值;
(3)當C、A兩點到y(tǒng)軸的距離相等,且S△CED=時,求拋物線和直線BE的解析式.

查看答案和解析>>

科目:初中數學 來源:2006年北京市中考數學試卷(課標卷)(解析版) 題型:解答題

(2006•北京)已知拋物線y=ax2+bx+c與y軸交于點A(0,3),與x軸分別交于B(1,0)、C(5,0)兩點.
(1)求此拋物線的解析式;
(2)若點D為線段OA的一個三等分點,求直線DC的解析式;
(3)若一個動點P自OA的中點M出發(fā),先到達x軸上的某點(設為點E),再到達拋物線的對稱軸上某點(設為點F),最后運動到點A′求使點P運動的總路徑最短的點E、點F的坐標,并求出這個最短總路徑的長.

查看答案和解析>>

同步練習冊答案