【題目】如圖,點(diǎn)A、B和線段CD都在數(shù)軸上,點(diǎn)A、C、D、B起始位置所表示的數(shù)分別為-2、0、3、12;線段CD沿?cái)?shù)軸的正方向以每秒1個(gè)單位的速度移動(dòng),移動(dòng)時(shí)間為t秒.
(1)用含有t的代數(shù)式表示AC的長為多少,當(dāng)t=2秒時(shí),AC的長為多少.
(2)當(dāng)0<t<9時(shí)AC+BD等于多少,當(dāng)t>9時(shí)AC+BD等于多少.
(3)若點(diǎn)A與線段CD同時(shí)出發(fā)沿?cái)?shù)軸的正方向移動(dòng),點(diǎn)A的速度為每秒2個(gè)單位,在移動(dòng)過程中,是否存在某一時(shí)刻使得AC=2BD,若存在,請(qǐng)直接寫出t的值;若不存在,請(qǐng)說明理由.
【答案】(1), 4 ;(2)11;;(3)存在 ,
【解析】
(1)t秒后點(diǎn)C運(yùn)動(dòng)的距離為t個(gè)單位長度,從而點(diǎn)C表示的數(shù);根據(jù)A、C兩點(diǎn)間的距離=|a-b|求解即可.
(2)t秒后點(diǎn)C運(yùn)動(dòng)的距離為t個(gè)單位長度,點(diǎn)D運(yùn)動(dòng)的距離為t個(gè)單位長度,從而可得到點(diǎn)A、點(diǎn)D表示的數(shù);根據(jù)兩點(diǎn)間的距離=|a-b|表示出AC、BD,根據(jù)AC+BD列式化簡(jiǎn)即可;
(3)假設(shè)能夠相等,找出AC、BD,根據(jù)AC=2BD即可列出關(guān)于t的含絕對(duì)值符號(hào)的一元一次方程,解方程即可得出結(jié)論.
解:(1)點(diǎn)A表示的數(shù)為-2,點(diǎn)C表示的數(shù)為t;
∴AC=|-2-t|=t+2.
當(dāng)t=2時(shí),
AC=2+2=4.
(2)∵t秒后點(diǎn)C運(yùn)動(dòng)的距離為t個(gè)單位長度,點(diǎn)D運(yùn)動(dòng)的距離為t個(gè)單位長度,
∴C表示的數(shù)是t,D表示的數(shù)是3+t,
∴AC=t+2,BD=|12-(3+t)|,
∵AC+BD
=t+2+|12-(t+3)|
=t+2+|9-t|
當(dāng)0<t<9時(shí),
AC+BD =t+2+9-t=11;
當(dāng)t>9時(shí),
AC+BD= t+2-9+t=2t-7.
(4)假設(shè)能相等,則點(diǎn)A表示的數(shù)為2t-2,C表示的數(shù)為t,D表示的數(shù)為t+3,B表示的數(shù)為12,
∴AC=|2t-2-t|=|t-2|,BD=|t+3-12|=|t-9|,
∵AC=2BD,
∴|t-2|=2|t-9|,
解得:t1=16,t2=.
故在運(yùn)動(dòng)的過程中使得AC=2BD,此時(shí)運(yùn)動(dòng)的時(shí)間為16秒和秒.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC和△BDE都是等邊三角形,且A,E,D三點(diǎn)在一直線上.請(qǐng)你說明DA﹣DB=DC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,BC=3,AC= ,AB的垂直平分線ED交BC的延長線于D點(diǎn),垂足為E,則sin∠CAD=( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,∠A,∠B,∠C的對(duì)邊分別為a、b、c,下列說法中錯(cuò)誤的是( )
A.如果∠C-∠B=∠A,則△ABC是直角三角形,且∠C=90;
B.如果,則△ABC是直角三角形,且∠C=90;
C.如果(c+a)( c-a)=,則△ABC是直角三角形,且∠C=90;
D.如果∠A:∠B:∠C=3:2:5,則△ABC是直角三角形,且∠C=90.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:
在解形如3|x-2|=|x-2|+4這一類含有絕對(duì)值的方程時(shí),我們可以根據(jù)絕對(duì)值的意義分x<2和x≥2兩種情況討論:
①當(dāng)x<2時(shí),原方程可化為-3(x-2)=-(x-2)+4,解得:x=0,符合x<2
②當(dāng)x≥2時(shí),原方程可化為3(x-2)=(x-2)+4,解得:x=4,符合x≥2
∴原方程的解為:x=0,x=4.
解題回顧:本題中2為x-2的零點(diǎn),它把數(shù)軸上的點(diǎn)所對(duì)應(yīng)的數(shù)分成了x<2和x≥2兩部分,所以分x<2和x≥2兩種情況討論.
知識(shí)遷移:
(1)運(yùn)用整體思想先求|x-3|的值,再去絕對(duì)值符號(hào)的方法解方程:|x-3|+8=3|x-3|;
知識(shí)應(yīng)用:
(2)運(yùn)用分類討論先去絕對(duì)值符號(hào)的方法解類似的方程:|2-x|-3|x+1|=x-9.
(提示:本題中有兩個(gè)零點(diǎn),它們把數(shù)軸上的點(diǎn)所對(duì)應(yīng)的數(shù)分成了幾部分呢?)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中學(xué)生騎電動(dòng)車上學(xué)給交通安全帶來隱患,為了解某中學(xué)2 500個(gè)學(xué)生家長對(duì)“中學(xué)生騎電動(dòng)車上學(xué)”的態(tài)度,從中隨機(jī)調(diào)查400個(gè)家長,結(jié)果有360個(gè)家長持反對(duì)態(tài)度,則下列說法正確的是( )
A. 調(diào)查方式是普查 B. 該校只有360個(gè)家長持反對(duì)態(tài)度
C. 樣本是360個(gè)家長 D. 該校約有90%的家長持反對(duì)態(tài)度
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿BC→CD→DA運(yùn)動(dòng)至點(diǎn)A停止.設(shè)點(diǎn)P運(yùn)動(dòng)的路程為x,△ABP的面積為y,y關(guān)于x的函數(shù)圖象如圖2所示,則m的值是( )
A.6
B.8
C.11
D.16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1為深50cm的圓柱形容器,底部放入一個(gè)長方體的鐵塊,現(xiàn)在以一定的速度向容器內(nèi)注水,圖2為容器頂部離水面的距離y(cm)隨時(shí)間t(分鐘)的變化圖象,則( )
A. 注水的速度為每分鐘注入cm高水位的水
B. 放人的長方體的高度為30cm
C. 該容器注滿水所用的時(shí)間為21分鐘
D. 此長方體的體積為此容器的體積的0.35.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形ABOC的頂點(diǎn)O在坐標(biāo)原點(diǎn),邊BO在x軸的負(fù)半軸上,∠BOC=60°,頂點(diǎn)C的坐標(biāo)為(m,3 ),反比例函數(shù)y= 的圖象與菱形對(duì)角線AO交D點(diǎn),連接BD,當(dāng)DB⊥x軸時(shí),k的值是( )
A.6
B.﹣6
C.12
D.﹣12
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com