【題目】如圖在等腰Rt△ABC,ACBC=2,點(diǎn)P在以斜邊AB為直徑的半圓上,MPC的中點(diǎn).當(dāng)點(diǎn)P沿半圓從點(diǎn)A運(yùn)動(dòng)至點(diǎn)B時(shí)點(diǎn)M運(yùn)動(dòng)的路徑長(zhǎng)是( 。

A. π B. C. 2 D.

【答案】B

【解析】

AB的中點(diǎn)OAE的中點(diǎn)E、BC的中點(diǎn)F,連結(jié)OC、OPOM、OE、OF、EF,如圖,利用等腰直角三角形的性質(zhì)得到,則,,再根據(jù)等腰三角形的性質(zhì)得OMPC,則∠CMO=90°,于是根據(jù)圓周角定理得到點(diǎn)M在以OC為直徑的圓上,由于點(diǎn)P點(diǎn)在A點(diǎn)時(shí),M點(diǎn)在E點(diǎn);點(diǎn)P點(diǎn)在B點(diǎn)時(shí),M點(diǎn)在F點(diǎn),則利用四邊形CEOF為正方得到EF=OC=,所以M點(diǎn)的路徑為以EF為直徑的半圓,然后根據(jù)圓的周長(zhǎng)公式計(jì)算點(diǎn)M運(yùn)動(dòng)的路徑長(zhǎng).

AB的中點(diǎn)OAE的中點(diǎn)E、BC的中點(diǎn)F,連結(jié)OC、OPOM、OEOFEF,如圖,
∵在等腰RtABC中,ACBC2,

,
MPC的中點(diǎn),
OMPC
∴∠CMO=90°,
∴點(diǎn)M在以PC為直徑的圓上,
點(diǎn)P點(diǎn)在A點(diǎn)時(shí),M點(diǎn)在E點(diǎn);點(diǎn)P點(diǎn)在B點(diǎn)時(shí),M點(diǎn)在F點(diǎn),易得四邊形CEOF為正方形,EF=OC=
M點(diǎn)的路徑為以EF為直徑的半圓,
∴點(diǎn)M運(yùn)動(dòng)的路徑長(zhǎng)=
故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)AD為⊙O 的直徑,E是AB上一點(diǎn),將正方形的一個(gè)角沿EC折疊,使得點(diǎn)B恰好與圓上的點(diǎn)F重合,則 tan∠AEF=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知反比例函數(shù)的圖象經(jīng)過三個(gè)點(diǎn)A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>0.

(1)當(dāng)y1﹣y2=4時(shí),求m的值;

(2)如圖,過點(diǎn)B、C分別作x軸、y軸的垂線,兩垂線相交于點(diǎn)D,點(diǎn)P在x軸上,若三角形PBD的面積是8,請(qǐng)寫出點(diǎn)P坐標(biāo)(不需要寫解答過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A2,﹣3)在雙曲線y上,則下列哪個(gè)點(diǎn)也在此雙曲線上( 。

A. 16 B. (﹣1,6 C. 23 D. (﹣2,﹣3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一次函數(shù)y=﹣x+2與反比例函數(shù)y與的圖象交于A,B兩點(diǎn),與x軸交于點(diǎn)M,且點(diǎn)A的橫坐標(biāo)是﹣2B點(diǎn)的橫坐標(biāo)是4

1)求反比例函數(shù)的解析式;

2)求△AOM的面積;

3)根據(jù)圖象直接寫出反比例函數(shù)值大于一次函數(shù)值時(shí)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某數(shù)學(xué)興趣小組同學(xué)進(jìn)行測(cè)量大樹CD高度的綜合實(shí)踐活動(dòng),如圖在點(diǎn)A處測(cè)得直立于地面的大樹頂端C的仰角為45°,然后沿在同一剖面的斜坡AB行走13米至坡頂B然后再沿水平方向行走4米至大樹腳底點(diǎn)D斜面AB的坡度(或坡比i=1:2.4,那么大樹CD的高度為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以AB邊為直徑的O經(jīng)過點(diǎn)P,C是O上一點(diǎn),連結(jié)PC交AB于點(diǎn)E,且ACP=60°,PA=PD.

(1)試判斷PD與O的位置關(guān)系,并說(shuō)明理由;

(2)若點(diǎn)C是弧AB的中點(diǎn),已知AB=4,求CECP的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),在△ABC中,∠ACB=90°,以AB為直徑作⊙O;過點(diǎn)C作直線CDAB的延長(zhǎng)線于點(diǎn)D,且BD=OB,CD=CA

1)求證:CD是⊙O的切線.

2)如圖(2),過點(diǎn)CCEAB于點(diǎn)E,若⊙O的半徑為8,∠A=30°,求線段BE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A和點(diǎn)B分別在x軸的正半軸和y軸的正半軸上,且OA=6OB=8,點(diǎn)DAB的中點(diǎn).

(1)直接寫出點(diǎn)D的坐標(biāo)及AB的長(zhǎng);

(2)若直角∠NDM繞點(diǎn)D旋轉(zhuǎn),射線DP分別交x軸、y軸于點(diǎn)PN,射線DMx軸于點(diǎn)M,連接MN

①當(dāng)點(diǎn)P和點(diǎn)N分別在x軸的負(fù)半軸和y軸的正半軸時(shí),若PDM∽△MON,求點(diǎn)N的坐標(biāo);

②在直角∠NDM繞點(diǎn)D旋轉(zhuǎn)的過程中,∠DMN的大小是否會(huì)發(fā)生變化?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案