【題目】如圖,是反比例函數(shù)在第一象限內(nèi)的圖像上的兩點(diǎn),且兩點(diǎn)的橫坐標(biāo)分別是2和4,則的面積是( )
A.B.C.D.
【答案】C
【解析】
過(guò)A作AC⊥x軸于C,過(guò)B作BD⊥x軸于D,先根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征及A、B兩點(diǎn)的橫坐標(biāo)求出A、B的坐標(biāo),根據(jù)反比例函數(shù)系數(shù)k的幾何意義可得S△AOC=S△BOD=,根據(jù)S四邊形AODB=S△AOC+S△BOD=S△AOC+S梯形ACDB可得出S△AOB=S梯形ACDB,利用梯形面積公式即可得答案.
∵A、B反比例函數(shù)圖像上的兩點(diǎn),橫坐標(biāo)分別為2、4,
∴當(dāng)x=2時(shí),y=2,即A點(diǎn)坐標(biāo)為(2,2),
當(dāng)x=4時(shí),y=1,即B點(diǎn)坐標(biāo)為(4,1)
∴S△AOC=S△BOD=×2×2=2,
∵S四邊形AODB=S△AOC+S△BOD=S△AOC+S梯形ACDB,
∴S△AOB=S梯形ACDB=(BD+AC)CD=×(1+2)×(4-2)=3.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的半徑為4,B是⊙O外一點(diǎn),連接OB,且OB=6,過(guò)點(diǎn)B作⊙O的切線BD,切點(diǎn)為D,延長(zhǎng)BO交⊙O于點(diǎn)A,過(guò)點(diǎn)A作切線BD的垂線,垂足為C.
(1)求證:AD平分∠BAC;
(2)求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,己知O為坐標(biāo)原點(diǎn),點(diǎn),以點(diǎn)A為旋轉(zhuǎn)中心,把順時(shí)針旋轉(zhuǎn),得.
(Ⅰ)如圖①,當(dāng)旋轉(zhuǎn)后滿足軸時(shí),求點(diǎn)C的坐標(biāo).
(Ⅱ)如圖②,當(dāng)旋轉(zhuǎn)后點(diǎn)C恰好落在x軸正半軸上時(shí),求點(diǎn)D的坐標(biāo).
(Ⅲ)在(Ⅱ)的條件下,邊上的一點(diǎn)P旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為,當(dāng)取得最小值時(shí),求點(diǎn)P的坐標(biāo)(直接寫出結(jié)果即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的弦,OP⊥OA交AB于點(diǎn)P,過(guò)點(diǎn)B的直線交OP的延長(zhǎng)線于點(diǎn)C,且CP=CB.
(1)求證:BC是⊙O的切線;
(2)若OA=5,OP=3,求CB的長(zhǎng);
(3)設(shè)△AOP的面積是S1,△BCP的面積是S2,且.若⊙O的半徑為4,BP=,求tan∠CBP.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一座鋼結(jié)構(gòu)橋梁的框架是△ABC,水平橫梁BC長(zhǎng)18米,中柱AD高6米,其中D是BC的中點(diǎn),且AD⊥BC.
(1)求sinB的值;
(2)現(xiàn)需要加裝支架DE、EF,其中點(diǎn)E在AB上,BE=2AE,且EF⊥BC,垂足為點(diǎn)F,求支架DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,的半徑為1;直線經(jīng)過(guò)圓心,交于、兩點(diǎn),直徑,點(diǎn)是直線上異于的一個(gè)動(dòng)點(diǎn),直線交于點(diǎn),點(diǎn)是直線上另一點(diǎn),且.
(Ⅰ)如圖1,點(diǎn)在的內(nèi)部,求證:是的切線;
(Ⅱ)如圖2,點(diǎn)在的外部,且,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,AB是⊙O的一條弦,OD⊥AB,垂足為C,交⊙O于點(diǎn)D,點(diǎn)E在⊙O上.
(1)若∠AOD=52°,求∠DEB的度數(shù);
(2)若OC=3,OA=5,求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形ABCD中,AB=8,點(diǎn)P在邊CD上,tan∠PBC=,點(diǎn)Q是在射線BP上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)Q作AB的平行線交射線AD于點(diǎn)M,點(diǎn)R在射線AD上,使RQ始終與直線BP垂直.
(1)如圖1,當(dāng)點(diǎn)R與點(diǎn)D重合時(shí),求PQ的長(zhǎng);
(2)如圖2,試探索: 的比值是否隨點(diǎn)Q的運(yùn)動(dòng)而發(fā)生變化?若有變化,請(qǐng)說(shuō)明你的理由;若沒(méi)有變化,請(qǐng)求出它的比值;
(3)如圖3,若點(diǎn)Q在線段BP上,設(shè)PQ=x,RM=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com