【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AF交CD于點(diǎn)E,交BC的延長(zhǎng)線于點(diǎn)F.
(1)求證:BF=CD;
(2)連接BE,若BE⊥AF,∠BFA=60°,BE=2 ,求平行四邊形ABCD的周長(zhǎng).
【答案】
(1)解:證明:∵四邊形ABCD為平行四邊形,
∴AB=CD,AD∥BC,
∴∠FAD=∠AFB,
又∵AF平分∠BAD,
∴∠FAD=∠FAB.
∴∠AFB=∠FAB.
∴AB=BF,
∴BF=CD
(2)解:∵由(1)知:AB=BF,
又∵∠BFA=60°,
∴△ABF為等邊三角形,
∴AF=BF=AB,∠ABE=60°,
∵BE⊥AF,
∴點(diǎn)E是AF的中點(diǎn).
∵在Rt△BEF中,∠BFA=60°,BE= ,
∴EF=2,BF=4,
∴AB=BF=4,
∵四邊形BACD是平行四邊形,
∴AB=CD,AD=BC,AB∥CD,
∴∠DCF=∠ABC=60°=∠F,
∴CE=EF,
∴△ECF是等邊三角形,
∴CE=EF=CF=2,
∴BC=4﹣2=2,
∴平行四邊形ABCD的周長(zhǎng)為2+2+4+4=12
【解析】(1.)根據(jù)平行四邊形的性質(zhì)得出AB=CD,AD∥BC,求出∠FAD=∠AFB,根據(jù)角平分線定義得出∠FAD=∠FAB,求出∠AFB=∠FAB,即可得出答案; (2.)求出△ABF為等邊三角形,根據(jù)等邊三角形的性質(zhì)得出AF=BF=AB,∠ABE=60°,在Rt△BEF中,∠BFA=60°,BE= ,解直角三角形求出EF=2,BF=4,AB=BF=4,BC=AD=2,即可得出答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,E為CD的中點(diǎn),連接AE、BE,BE⊥AE,延長(zhǎng)AE交BC的延長(zhǎng)線于點(diǎn)F.
求證:(1)FC=AD;
(2)AB=BC+AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=mx2﹣4mx+2m﹣1(m≠0)與平行于x軸的一條直線交于A,B兩點(diǎn).
(1)求拋物線的對(duì)稱軸;
(2)如果點(diǎn)A的坐標(biāo)是(﹣1,﹣2),求點(diǎn)B的坐標(biāo);
(3)拋物線的對(duì)稱軸交直線AB于點(diǎn)C,如果直線AB與y軸交點(diǎn)的縱坐標(biāo)為﹣1,且拋物線頂點(diǎn)D到點(diǎn)C的距離大于2,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=α,AC、BD交于M
(1)如圖1,當(dāng)α=90°時(shí),∠AMD的度數(shù)為 °
(2)如圖2,當(dāng)α=60°時(shí),∠AMD的度數(shù)為 °
(3)如圖3,當(dāng)△OCD繞O點(diǎn)任意旋轉(zhuǎn)時(shí),∠AMD與α是否存在著確定的數(shù)量關(guān)系?如果存在,請(qǐng)你用表示∠AMD,并圖3進(jìn)行證明;若不確定,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由甲、乙兩個(gè)工程隊(duì)承包某校校園的綠化工程,甲、乙兩隊(duì)單獨(dú)完成這項(xiàng)工作所需的時(shí)間比是3∶2,兩隊(duì)共同施工6天可以完成.
(1)求兩隊(duì)單獨(dú)完成此項(xiàng)工程各需多少天?
(2)此項(xiàng)工程由甲、乙兩隊(duì)共同施工6天完成任務(wù)后,學(xué)校付給他們4000元報(bào)酬,若按各自完成的工程量分配這筆錢,問甲、乙兩隊(duì)各應(yīng)得到多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中, ,,將沿折疊,使點(diǎn)落在直角邊上的點(diǎn)處,設(shè)與邊分別交于點(diǎn),如果折疊后與均為等腰三角形,那么__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖書管理員小張要騎車從學(xué)校到教育局,一出校門,遇到了王老師,王老師說:“今天有風(fēng),而且去時(shí)逆風(fēng),要吃虧了”,小張回答說:“去時(shí)逆風(fēng),回來時(shí)順風(fēng),和無(wú)風(fēng)往返一趟所用時(shí)間相同”.(順風(fēng)速度=無(wú)風(fēng)時(shí)騎車速度+風(fēng)速,逆風(fēng)速度=無(wú)風(fēng)時(shí)騎車速度-風(fēng)速)
(1)如果學(xué)校到教育局的路程是15 km,無(wú)風(fēng)時(shí)小張騎自行車的速度是20 km/h,他逆風(fēng)去教育局所用時(shí)間是順風(fēng)回學(xué)校所用時(shí)間的倍,求風(fēng)速是多少?
(2)如果設(shè)從學(xué)校到教育局的路程為s千米,無(wú)風(fēng)時(shí)騎車速度為v千米/時(shí),風(fēng)速為a千米/時(shí)(v>a),那么有風(fēng)往返一趟的時(shí)間 無(wú)風(fēng)往返一趟的時(shí)間(填“>”、“<”或“=”),試說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com