【題目】如圖,在平面直角坐標(biāo)系中,已知OA=12厘米,OB=6厘米.點P從點O開始沿OA邊向點A1厘米/秒的速度移動;點Q從點B開始沿BO邊向點O1厘米/秒的速度移動.如果P、Q同時出發(fā),用t(秒)表示移動的時間(0≤t≤6),那么,當(dāng)t為何值時,POQAOB相似?

【答案】當(dāng)t=4t=2時,POQAOB相似.

【解析】試題分析:根據(jù)題意可知:OQ=6-t,OP=t,然后分兩種情況分別求出t的值.

試題解析:解:①若POQ∽△AOB時,=,即=,

整理得:12﹣2t=t,

解得:t=4

②若POQ∽△BOA時,=,即=,

整理得:6﹣t=2t,

解得:t=2

0≤t≤6,

t=4t=2均符合題意,

∴當(dāng)t=4t=2時,POQAOB相似.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當(dāng)水面的寬度為10m,橋洞與水面

的最大距離是5m

1經(jīng)過討論,同學(xué)們得出三種建立平面直角坐標(biāo)系的方案如下圖

你選擇的方案是_____填方案一,方案二,或方案三),B點坐標(biāo)是______,求出你所選方案中的拋物線的表達式;

2因為上游水庫泄洪水面寬度變?yōu)?/span>6m,求水面上漲的高度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場購進一種每件價格為100元的新商品,在商場試銷發(fā)現(xiàn):銷售單價x(/)與每天銷售量y()之間滿足如圖所示的關(guān)系:

(1)求出yx之間的函數(shù)關(guān)系式;

(2)寫出每天的利潤W與銷售單價x之間的函數(shù)關(guān)系式;若你是商場負責(zé)人,會將售價定為多少,來保證每天獲得的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD的邊長為4,點E,F分別在AD,DC上,AEDF1,BEAF相交于點G,點HBF的中點,連接GH,則GH的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=mx﹣m與y=m≠0)的圖象可能是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:一次函數(shù)的圖象與反比例函數(shù))的圖象相交于A,B兩點(AB的右側(cè)).

1)當(dāng)A4,2)時,求反比例函數(shù)的解析式及B點的坐標(biāo);

2)在(1)的條件下,反比例函數(shù)圖象的另一支上是否存在一點P,使△PAB是以AB為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.

3)當(dāng)Aa,﹣2a+10),Bb,﹣2b+10)時,直線OA與此反比例函數(shù)圖象的另一支交于另一點C,連接BCy軸于點D.若,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:已知方程,,求的值.

解:由,及,可知,.

,

.

可變形為,

根據(jù)的特征.

、是方程的兩個不相等的實數(shù)根,

,即.

根據(jù)閱讀材料所提供的方法,完成下面的解答.

已知:,,

(1)求:的值.

(2)求:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于兩點,點軸的右側(cè)且點在點的左側(cè),與軸交于點,.

1)求的值;

2)點繞點逆時針旋轉(zhuǎn)得到點,直線交拋物線的另一個交點為,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,對稱軸為直線x=1的拋物線y=-x2+bx+cx軸交于點A和點B,與y軸交于點C,且點B的坐標(biāo)為(-10

1)求拋物線的解析式;

2)點D的坐標(biāo)為(0,1),點P是拋物線上的動點,若△PCD是以CD為底的等腰三角形,求點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案