若-23ax+2b2y+xa3b11-3ab4+5是關(guān)于a,b的八次多項(xiàng)式,則x,y的值各為多少?
解:∵-23ax+2b2y+xa3b11-3ab4+5是關(guān)于a,b的八次多項(xiàng)式,
∴此多項(xiàng)式中的最高次項(xiàng)的次數(shù)應(yīng)為8,
∴項(xiàng)“+xa3b11”是不存在的,
即:x=0,
∴項(xiàng)“-23ax+2b2y”的次數(shù)應(yīng)為8,
即:x+2+2y=8,
又∵x=0,
∴y=3,
即可得x的值為0,y的值為3.
分析:根據(jù)若-23ax+2b2y+xa3b11-3ab4+5是關(guān)于a,b的八次四項(xiàng)式,可判斷出此多項(xiàng)式中的最高次項(xiàng)的次數(shù)應(yīng)為8,從而確定項(xiàng)“+xa3b11”是不存在的,然后得出項(xiàng)“-23ax+2b2y”的次數(shù)應(yīng)為8,得出關(guān)于x、y的方程,結(jié)合x(chóng)=0,可得出y的值.
點(diǎn)評(píng):此題考查了多項(xiàng)式的知識(shí),屬于基礎(chǔ)題,關(guān)鍵是掌握多項(xiàng)式的項(xiàng)數(shù)、次數(shù)的尋找辦法,有一定難度.