對(duì)同一圖形,從不同的角度看就會(huì)有不同的發(fā)現(xiàn),請(qǐng)根據(jù)右圖解決以下問(wèn)題:
(1)如圖,△ABC中,已知∠BAC=45°,AD⊥BC于D,分別以AB、AC所在的直線為對(duì)稱軸,作出△ABD、△ACD的軸對(duì)稱圖形,點(diǎn)D的對(duì)稱點(diǎn)分別為E、F,延長(zhǎng)EB、FC相交于G點(diǎn),試證明四邊形AEGF是正方形;
(2)如圖,在邊長(zhǎng)為12cm的正方形AEFG中,點(diǎn)B是邊EG上一點(diǎn),將邊AE、AF分別沿AB、AC向內(nèi)翻折至AD處,則點(diǎn)B、D、C在一條直線上,若EB=4cm,求△ABC的面積.

解:(1)∵AD⊥BC于D,
∴∠ADB=∠ADC=90°.
∵△ABE與△ABD關(guān)于AB對(duì)稱,△ACF與△ACD關(guān)于AC對(duì)稱,
∴AE=AF,∠E=∠F=90°,∠EAB=∠DAB,∠DAC=∠FAC.
∵∠BAD+∠CAD=45°,
∴∠BAE+∠FAC=45°,
∴∠BAD+∠CAD+∠BAE+∠FAC=90°,
∴四邊形AEGF是矩形,
∵AE=AF,
∴矩形AEGF是正方形.

(2)∵四邊形AEFG是正方形,
∴∠E=∠G=∠F=90°,AE=GE=GF=AF=12,
∵BE=4,
∴BG=8,
設(shè)CF=x,則BC=4+x,GC=12-x,
∴64+(12-x)2=(4+x)2,解得
x=6,
∴BC=10,
∴S△ABC=×10×12=60.
分析:(1)由軸對(duì)稱及已知條件可以得出∠E=∠F=∠EAF=90°AE=AF,再根據(jù)正方形的判定方法就可以得出四邊形AEGF是正方形.
(2)根據(jù)條件可以求出BG=8,BD=4,設(shè)出CF=x,則BC=4+x,GC=12-x,由勾股定理建立等量關(guān)系求出x的值,再利用三角形的面積公式就可以求出其值.
點(diǎn)評(píng):本題是一道軸對(duì)稱問(wèn)題的解答題,考查了三角形的面積,正方形的判定,軸對(duì)稱的性質(zhì),勾股定理的運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

(2013•青島)在前面的學(xué)習(xí)中,我們通過(guò)對(duì)同一面積的不同表達(dá)和比較,根據(jù)圖1和圖2發(fā)現(xiàn)并驗(yàn)證了平方差公式和完全平方公式.
這種利用面積關(guān)系解決問(wèn)題的方法,使抽象的數(shù)量關(guān)系因幾何直觀而形象化.

【研究速算】
提出問(wèn)題:47×43,56×54,79×71,…是一些十位數(shù)字相同,且個(gè)位數(shù)字之和是10的兩個(gè)兩位數(shù)相乘的算式,是否可以找到一種速算方法?
幾何建模:
用矩形的面積表示兩個(gè)正數(shù)的乘積,以47×43為例:
(1)畫(huà)長(zhǎng)為47,寬為43的矩形,如圖3,將這個(gè)47×43的矩形從右邊切下長(zhǎng)40,寬3的一條,拼接到原矩形上面.
(2)分析:原矩形面積可以有兩種不同的表達(dá)方式:47×43的矩形面積或(40+7+3)×40的矩形與右上角3×7的矩形面積之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021.
用文字表述47×43的速算方法是:十位數(shù)字4加1的和與4相乘,再乘以100,加上個(gè)位數(shù)字3與7的積,構(gòu)成運(yùn)算結(jié)果.
歸納提煉:
兩個(gè)十位數(shù)字相同,并且個(gè)位數(shù)字之和是10的兩位數(shù)相乘的速算方法是(用文字表述)
十位數(shù)字加1的和與十位數(shù)字相乘,再乘以100,加上兩個(gè)個(gè)位數(shù)字的積,構(gòu)成運(yùn)算結(jié)果
十位數(shù)字加1的和與十位數(shù)字相乘,再乘以100,加上兩個(gè)個(gè)位數(shù)字的積,構(gòu)成運(yùn)算結(jié)果

【研究方程】
提出問(wèn)題:怎樣圖解一元二次方程x2+2x-35=0(x>0)?
幾何建模:
(1)變形:x(x+2)=35.
(2)畫(huà)四個(gè)長(zhǎng)為x+2,寬為x的矩形,構(gòu)造圖4
(3)分析:圖中的大正方形面積可以有兩種不同的表達(dá)方式,(x+x+2)2或四個(gè)長(zhǎng)x+2,寬x的矩形面積之和,加上中間邊長(zhǎng)為2的小正方形面積.
即(x+x+2)2=4x(x+2)+22
∵x(x+2)=35
∴(x+x+2)2=4×35+22
∴(2x+2)2=144
∵x>0
∴x=5
歸納提煉:求關(guān)于x的一元二次方程x(x+b)=c(x>0,b>0,c>0)的解.
要求參照上述研究方法,畫(huà)出示意圖,并寫(xiě)出幾何建模步驟(用鋼筆或圓珠筆畫(huà)圖,并注明相關(guān)線段的長(zhǎng))
【研究不等關(guān)系】
提出問(wèn)題:怎樣運(yùn)用矩形面積表示(y+3)(y+2)與2y+5的大小關(guān)系(其中y>0)?
幾何建模:
(1)畫(huà)長(zhǎng)y+3,寬y+2的矩形,按圖5方式分割
(2)變形:2y+5=(y+3)+(y+2)
(3)分析:圖5中大矩形的面積可以表示為(y+3)(y+2);陰影部分面積可以表示為(y+3)×1,畫(huà)點(diǎn)部分部分的面積可表示為y+2,由圖形的部分與整體的關(guān)系可知(y+3)(y+2)>(y+3)+(y+2),即(y+3)(y+2)>2y+5
歸納提煉:
當(dāng)a>2,b>2時(shí),表示ab與a+b的大小關(guān)系.
根據(jù)題意,設(shè)a=2+m,b=2+n(m>0,n>0),要求參照上述研究方法,畫(huà)出示意圖,并寫(xiě)出幾何建模步驟(用鋼筆或圓珠筆畫(huà)圖并注明相關(guān)線段的長(zhǎng))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

對(duì)同一圖形,從不同的角度看就會(huì)有不同的發(fā)現(xiàn),請(qǐng)根據(jù)右圖解決以下問(wèn)題:
(1)如圖,△ABC中,已知∠BAC=45°,AD⊥BC于D,分別以AB、AC所在的直線為對(duì)稱軸,作出△ABD、△ACD的軸對(duì)稱圖形,點(diǎn)D的對(duì)稱點(diǎn)分別為E、F,延長(zhǎng)EB、FC相交于G點(diǎn),試證明四邊形AEGF是正方形;
(2)如圖,在邊長(zhǎng)為12cm的正方形AEFG中,點(diǎn)B是邊EG上一點(diǎn),將邊AE、AF分別沿AB、AC向內(nèi)翻折至AD處,則點(diǎn)B、D、C在一條直線上,若EB=4cm,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年初中畢業(yè)升學(xué)考試(山東青島卷)數(shù)學(xué)(解析版) 題型:解答題

在前面的學(xué)習(xí)中,我們通過(guò)對(duì)同一面積的不同表達(dá)和比較,根據(jù)圖①和圖②發(fā)現(xiàn)并驗(yàn)證了平方差公式和完全平方公式

這種利用面積關(guān)系解決問(wèn)題的方法,使抽象的數(shù)量關(guān)系因集合直觀而形象化。

【研究速算】

提出問(wèn)題:47×43,56×54,79×71,……是一些十位數(shù)字相同,且個(gè)位數(shù)字之和是10的兩個(gè)兩位數(shù)相乘的算式,是否可以找到一種速算方法?

幾何建模:

用矩形的面積表示兩個(gè)正數(shù)的乘積,以47×43為例:

(1)畫(huà)長(zhǎng)為47,寬為43的矩形,如圖③,將這個(gè)47×43的矩形從右邊切下長(zhǎng)40,寬3的一條,拼接到原矩形的上面。

(2)分析:原矩形面積可以有兩種不同的表達(dá)方式,47×43的矩形面積或(40+7+3)×40的矩形與右上角3×7的矩形面積之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,用文字表述47×43的速算方法是:十位數(shù)字4加1的和與4相乘,再乘以100,加上個(gè)位數(shù)字3與7的積,構(gòu)成運(yùn)算結(jié)果。

歸納提煉:

兩個(gè)十位數(shù)字相同,并且個(gè)位數(shù)字之和是10的兩位數(shù)相乘的速算方法是(用文字表述)        .

【研究方程】

提出問(wèn)題:怎么圖解一元二次方程

幾何建模:

(1)變形:

(2)畫(huà)四個(gè)長(zhǎng)為,寬為的矩形,構(gòu)造圖④

(3)分析:圖中的大正方形面積可以有兩種不同的表達(dá)方式,或四個(gè)長(zhǎng),寬的矩形之和,加上中間邊長(zhǎng)為2的小正方形面積

即:

歸納提煉:求關(guān)于的一元二次方程的解

要求參照上述研究方法,畫(huà)出示意圖,并寫(xiě)出幾何建模步驟(用鋼筆或圓珠筆畫(huà)圖,并標(biāo)注相關(guān)線段的長(zhǎng))

【研究不等關(guān)系】

提出問(wèn)題:怎么運(yùn)用矩形面積表示的大小關(guān)系(其中)?

幾何建模:

(1)畫(huà)長(zhǎng),寬的矩形,按圖⑤方式分割

(2)變形:

(3)分析:圖⑤中大矩形的面積可以表示為;陰影部分面積可以表示為

畫(huà)點(diǎn)部分的面積可表示為,由圖形的部分與整體的關(guān)系可知:,即

歸納提煉:

當(dāng),時(shí),表示的大小關(guān)系

根據(jù)題意,設(shè),要求參照上述研究方法,畫(huà)出示意圖,并寫(xiě)出幾何建模步驟(用鋼筆或圓珠筆畫(huà)圖,并標(biāo)注相關(guān)線段的長(zhǎng))

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省連云港市新海實(shí)驗(yàn)中學(xué)九年級(jí)(上)第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

對(duì)同一圖形,從不同的角度看就會(huì)有不同的發(fā)現(xiàn),請(qǐng)根據(jù)右圖解決以下問(wèn)題:
(1)如圖,△ABC中,已知∠BAC=45°,AD⊥BC于D,分別以AB、AC所在的直線為對(duì)稱軸,作出△ABD、△ACD的軸對(duì)稱圖形,點(diǎn)D的對(duì)稱點(diǎn)分別為E、F,延長(zhǎng)EB、FC相交于G點(diǎn),試證明四邊形AEGF是正方形;
(2)如圖,在邊長(zhǎng)為12cm的正方形AEFG中,點(diǎn)B是邊EG上一點(diǎn),將邊AE、AF分別沿AB、AC向內(nèi)翻折至AD處,則點(diǎn)B、D、C在一條直線上,若EB=4cm,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案