【題目】為配合我市“創(chuàng)建全國文明城市”某單位計劃在一塊矩形空地上修建綠色植物園(如圖所示),其中邊靠墻(墻長為米),另外三邊用總長36米的材料圍成.若米,矩形的面積為平方米.
(1)求與的函數(shù)關系式;
(2)若矩形面積為160平方米,求的長.
(3)在(2)的前提下,墻長米對的長有影響嗎?請詳細說明.
科目:初中數(shù)學 來源: 題型:
【題目】綠色出行是對環(huán)境影響最小的出行方式,“共享單車”已成為北京的一道靚麗的風景線.某社會實踐活動小
組為了了解“共享單車”的使用情況,對本校教師在3月6日至3月10日使用單車的情況進行了問卷調(diào)查,
以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計圖的一部分:
請根據(jù)以上信息解答下列問題:
(1)3月7日使用“共享單車”的教師人數(shù)為人,并請補全條形統(tǒng)計圖;
(2)不同品牌的“共享單車”各具特色,社會實踐活動小組針對有過使用“共享單車”經(jīng)歷的教師做了進一步調(diào)查,每位教師都按要求選擇了一種自己喜歡的“共享單車”,統(tǒng)計結(jié)果如圖,其中喜歡的教師有36人,求喜歡的教師的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與探究.
如圖1,拋物線y=x2﹣x﹣2與x軸交于A,B兩點,與y軸交于點C,經(jīng)過點B的直線交y軸于點E(0,2).
(1)求A,B,C三點的坐標及直線BE的解析式.
(2)如圖2,過點A作BE的平行線交拋物線于點D,點P是拋物線上位于線段AD下方的一個動點,連接PA,PD,求OAPD面積的最大值.
(3)若(2)中的點P為拋物線上一動點,在x軸上是否存在點Q,使得以A,D,P,Q為頂點的四邊形是平行四邊形?若存在,請直接寫出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:△ABC 內(nèi)接于⊙O,過點 A 作⊙O 的切線交 CB 的延長線于點 P,且∠PAB=45°.
(1)如圖 1,求∠ACB 的度數(shù);
(2)如圖 2,AD 是⊙O 的直徑,AD 交 BC 于點 E,連接 CD,求證:AC CD ;
(3)如圖 3 ,在(2)的條件下,當 BC 4CD 時,點 F,G 分別在 AP,AB 上,連接 BF,FG,∠BFG=∠P,且 BF=FG,若 AE=15,求 FG 的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,在筆山銀子巖坡頂處的同一水平面上有一座移動信號發(fā)射塔,
筆山職中數(shù)學興趣小組的同學在斜坡底處測得該塔的塔頂的仰角為,然后他們沿著坡度為的斜坡攀行了米,在坡頂處又測得該塔的塔頂的仰角為.求:
坡頂到地面的距離;
移動信號發(fā)射塔的高度(結(jié)果精確到米).
(參考數(shù)據(jù):,,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰中,,動點從點出發(fā)沿路徑以的速度運動,設點運動時間為,的面積為,則關于的函數(shù)圖象大致為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某農(nóng)戶今年1月初以20000元/畝的價格承包了10畝地用來種植某農(nóng)作物,已知若按傳統(tǒng)種植,每月每畝能產(chǎn)出3000千克,每畝的種植費用為2500元;若按科學種植,每月每畝產(chǎn)量可增加,但種植費用會增加2000元/畝,且前期需要再投入25萬元,花費4個月的時間進行生長環(huán)境的改善,改善期間無法種植.已知每千克農(nóng)作物市場售價為3元,每月底一次性全部出售,假設前個月銷售總額為(萬元).
(1)當時,分別求出兩種種植方法下的銷售總額;
(2)問:若該農(nóng)戶選擇科學種植,幾個月后能夠收回成本?
(3)在(2)的條件下,假如從2019年1月初算起,那么至少要到何時,該農(nóng)戶獲得的總利潤能夠超過傳統(tǒng)種植同樣時間內(nèi)所獲得的總利潤?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先閱讀,再解答問題.
恒等變形,是代數(shù)式求值的一個很重要的方法,利用恒等變形,可以把無理數(shù)運算轉(zhuǎn)化為有理數(shù)運算,可以把次數(shù)較高的代數(shù)式轉(zhuǎn)化為次數(shù)較低的代數(shù)式.如當x=時,求﹣x2﹣x+2的值,為解答這題,若直接把x=代入所求的式中,進行計算,顯然很麻煩.我們可以通過恒等變形,對本題進行解答.
方法一 將條件變形.因x=,得x﹣1=.再把所求的代數(shù)式變形為關于(x﹣1)的表達式.
原式=(x3﹣2x2﹣2x)+2
= [x2(x﹣1)﹣x(x﹣1)﹣3x]+2
= [x(x﹣1)2﹣3x]+2
=(3x﹣3x)+2
=2
方法二 先將條件化成整式,再把等式兩邊同時平方,把無理數(shù)運算轉(zhuǎn)化為有理數(shù)運算.由x﹣1=,可得x2﹣2x﹣2=0,即,x2﹣2x=2,x2=2x+2.
原式=x(2x+2)﹣x2﹣x+2
=x2+x﹣x2﹣x+2
=2
請參以上的解決問題的思路和方法,解決以下問題:
(1)若a2﹣3a+1=0,求2a3﹣5a2﹣3+的值;
(2)已知x=2+,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com