【題目】有一塊面積為100cm2的正方形紙片.
(1)該正方形紙片的邊長(zhǎng)為 cm(直接寫(xiě)出結(jié)果);
(2)小麗想沿著該紙片邊的方向裁剪出一塊面積為90cm2的長(zhǎng)方形紙片,使它的長(zhǎng)寬之比為4:3.小麗能用這塊紙片裁剪出符合要求的紙片嗎?
【答案】(1)10;(2)小麗不能用這塊紙片裁出符合要求的紙片.
【解析】
(1)根據(jù)算術(shù)平方根的定義直接得出;
(2)直接利用算術(shù)平方根的定義長(zhǎng)方形紙片的長(zhǎng)與寬,進(jìn)而得出答案.
解:(1)根據(jù)算術(shù)平方根定義可得,該正方形紙片的邊長(zhǎng)為10cm;
故答案為:10;
(2)∵長(zhǎng)方形紙片的長(zhǎng)寬之比為4:3,
∴設(shè)長(zhǎng)方形紙片的長(zhǎng)為4xcm,則寬為3xcm,
則4x3x=90,
∴12x2=90,
∴x2=,
解得:x=或x=-(負(fù)值不符合題意,舍去),
∴長(zhǎng)方形紙片的長(zhǎng)為2cm,
∵5<<6,
∴10<2,
∴小麗不能用這塊紙片裁出符合要求的紙片.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)過(guò)點(diǎn)A(﹣3,0),B(﹣2,3),C(0,3),其頂點(diǎn)為D.
(1)求拋物線(xiàn)的解析式;
(2)設(shè)點(diǎn)M(1,m),當(dāng)MB+MD的值最小時(shí),求m的值;
(3)若P是拋物線(xiàn)上位于直線(xiàn)AC上方的一個(gè)動(dòng)點(diǎn),求△APC的面積的最大值;
(4)若拋物線(xiàn)的對(duì)稱(chēng)軸與直線(xiàn)AC相交于點(diǎn)N,E為直線(xiàn)AC上任意一點(diǎn),過(guò)點(diǎn)E作EF∥ND交拋物線(xiàn)于點(diǎn)F,以N,D,E,F為頂點(diǎn)的四邊形能否為平行四邊形?若能,求點(diǎn)E的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)(3,2)。
(1)求這個(gè)二次函數(shù)的關(guān)系式;
(2)畫(huà)出它的圖象,并指出圖象的頂點(diǎn)坐標(biāo);
(3)當(dāng)x>0時(shí),求使y≥2的x的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是用4個(gè)全等的直角三角形與1個(gè)小正方形鑲嵌而成的正方形圖案.已知大正方形面積為49,小正方形面積為4,若用,表示直角三角形的兩直角邊,下列四個(gè)說(shuō)法:①;②;③;④;其中說(shuō)法正確的是
A. ①②B. ①②③C. ①②④D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x,y的方程組 ,給出下列結(jié)論:
① 是方程組的解;②無(wú)論a取何值,x,y的值都不可能互為相反數(shù);③當(dāng)a=1時(shí),方程組的解也是方程x+y=4a的解;④x,y的都為自然數(shù)的解有4對(duì).其中正確的個(gè)數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線(xiàn)y=–x2+bx+c經(jīng)過(guò)點(diǎn)A(3,0)和點(diǎn)B(0,3),且這個(gè)拋物線(xiàn)的對(duì)稱(chēng)軸為直線(xiàn)l,頂點(diǎn)為C.
(1)求拋物線(xiàn)的解析式;
(2)連接AB、AC、BC,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠C=90°,AC=4,矩形DEFG的頂點(diǎn)D、G分別在AC、BC上,邊EF在AB上.
(1)求證:△AED∽△DCG;
(2)若矩形DEFG的面積為4,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,點(diǎn)P是線(xiàn)段AD上任意一點(diǎn),點(diǎn)Q為BC上一點(diǎn),且AP=CQ.
(1)求證:BP=DQ;
(2)若AB=4,且當(dāng)PD=5時(shí)四邊形PBQD為菱形.求AD為多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將函數(shù)y= (x-2)2+1的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點(diǎn)A(1,m),B(4,n)平移后的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A′,B′,若曲線(xiàn)段AB掃過(guò)的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達(dá)式是__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com