如圖,正比例函數(shù)y=
1
2
x
的圖象與反比例函數(shù)y=
k
x
(k≠0)在第一象限的圖象交于A點,過A點作x軸的垂線,垂足為M,已知△OAM的面積為1.
(1)求反比例函數(shù)的解析式;
(2)如圖,點B為反比例函數(shù)在第三象限圖象上的點,過B點作x軸的垂線,垂足為N,求證:△OAM≌△OBN.
分析:(1)根據(jù)反比例函數(shù)的比例系數(shù)的幾何意義可以求得反比例函數(shù)的解析式;
(2)兩函數(shù)的解析式聯(lián)立組成方程組即可求得點A的坐標,進而得到ON=OM=2,NB=AM=1,∠B N O=∠AMO=90°,然后可以得到△OAM≌△OBN.
解答:(1)解:設A點的坐標為(a,b),則b=
k
a
.∴ab=k.
1
2
ab=1
,
1
2
k=1

∴k=2.
∴反比例函數(shù)的解析式為y=
2
x
…(5分)

(2)證明:由
y=
2
x
y=
1
2
x
x=2
y=1.

∴A為(2,1).
由反比例函數(shù)的中心對稱性可得B(-2,-1),
得到ON=OM=2,NB=AM=1,∠BNO=∠AMO=90度,
∴△OAM≌△OBN           …(5分)
點評:本題考查了反比例函數(shù)的幾何意義及反比例函數(shù)與一次函數(shù)的交點問題,綜合性較強.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正比例函數(shù)y=
1
2
x
的圖象與反比例函數(shù)y=
k
x
(k≠0)在第一象限的圖象交于A點,過A點作x軸的垂線,垂足為M,已知△OAM的面積為1.
(1)求反比例函數(shù)的解析式;
(2)如果B為反比例函數(shù)在第一象限圖象上的點,且B點的橫坐標為1,在x軸上求一點P,使PA+PB最小.(只需在圖中作出點B,P,保留痕跡,不必寫出理由)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正比例函數(shù)y=kx(k>0)與反比例函數(shù)y=
1
x
的圖象相交于A、C兩點,過A作x軸的垂線,交x軸于點B,連接BC.若△ABC的面積為S,則( 。
A、S=1B、S=2
C、S=3D、S的值不能確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正比例函數(shù)y=kx(k>0)與反比例函數(shù)y=
5x
的圖象相交于A、C兩點,過A作x軸的垂線交x軸于B,連接BC,則△ABC的面積S=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,正比例函數(shù)y=
1
2
x的圖象與反比例函數(shù)y=
k
x
(k≠0)在第一象限的圖象交于A點,過A點作x軸的垂線,垂足為M,已知△AOM的面積為1,點B(-1,t)為反比例函數(shù)在第三象限圖象上的點.
(1)求反比例函數(shù)的解析式;
(2)試求出點A、點B的坐標;
(3)在y軸上求一點P,使|PA-PB|的值最大.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,正比例函數(shù)y=k1x的圖象與反比例函數(shù)y=
k2x
的圖象相交于點A、B,點A 在第一象限,且點A 的橫坐標為1,作AH垂直于x軸,垂足為點H,S△AOH=1.
(1)求AH的長;
(2)求這兩個函數(shù)的解析式;
(3)如果△OAC是以OA為腰的等腰三角形,且點C在x軸上,求點C的坐標.

查看答案和解析>>

同步練習冊答案