我省某工藝廠為全運(yùn)會(huì)設(shè)計(jì)了一款成本為每件20元得工藝品,投放市場(chǎng)進(jìn)行試銷后發(fā)現(xiàn)每天的銷售量y(件)是售價(jià)x(元∕件)的一次函數(shù),當(dāng)售價(jià)為22元∕件時(shí),每天銷售量為780件;當(dāng)售價(jià)為25元∕件時(shí),每天的銷售量為750件.
(1)求y與x的函數(shù)關(guān)系式;
(2)如果該工藝品售價(jià)最高不能超過(guò)每件30元,那么售價(jià)定為每件多少元時(shí),工藝廠銷售該工藝品每天獲得的利潤(rùn)最大?最大利潤(rùn)是多少元?(利潤(rùn)=售價(jià)-成本)
分析:(1)將x=22,y=780,x=25,y=750代入y=kx+b即可求得y與x的函數(shù)關(guān)系式;
(2)先求得每天獲得的利潤(rùn)w關(guān)于x的函數(shù)關(guān)系式,再求出當(dāng)x=30時(shí)獲得的利潤(rùn)最大.
解答:解:(1)設(shè)y與x的函數(shù)關(guān)系式為y=kx+b(k≠0),
把x=22,y=780,x=25,y=750代入y=kx+b得
22k+b=780
25k+b=750

解得
k=-10
b=1000

∴函數(shù)的關(guān)系式為y=-10x+1000;

(2)設(shè)該工藝品每天獲得的利潤(rùn)為w元,
則w=y(x-20)=(-10x+1000)(x-20)=-10(x-60)2+16000;
∵-10<0,
∴當(dāng)20<x≤30時(shí),w隨x的增大而增大,
所以當(dāng)售價(jià)定為30元/時(shí),該工藝品每天獲得的利潤(rùn)最大.
即w最大=-10(30-60)2+16000=7000元;
答:當(dāng)售價(jià)定為30元/時(shí),該工藝品每天獲得的利潤(rùn)最大,最大利潤(rùn)為7000元.
點(diǎn)評(píng):本題主要考查二次函數(shù)的實(shí)際應(yīng)用,解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程,再求解,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•海滄區(qū)質(zhì)檢)我省某工藝廠為全運(yùn)會(huì)設(shè)計(jì)了一款工藝品的成本是20元∕件.投放市場(chǎng)進(jìn)行試銷后發(fā)現(xiàn)每天的銷售量y(件)是售價(jià)x(元∕件)的一次函數(shù),當(dāng)售價(jià)為22元∕件時(shí),每天銷售量為380件;當(dāng)售價(jià)為25元∕件時(shí),每天的銷售量為350件.
(1)求y與x的函數(shù)關(guān)系式;
(2)該工藝品售價(jià)定為每件多少元時(shí),每天獲得的利潤(rùn)最大?最大利潤(rùn)是多少元?(利潤(rùn)=銷售收入-成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我省某工藝廠為全運(yùn)會(huì)設(shè)計(jì)了一款成本為每件20元的工藝品,投放市場(chǎng)進(jìn)行試銷后發(fā)現(xiàn)每天的銷售量y(件)是售價(jià)x(元∕件)的一次函數(shù),當(dāng)售價(jià)為22元∕件時(shí),每天銷售量為780件;當(dāng)售價(jià)為25元∕件時(shí),每天的銷售量為750件.
(1)求y與x的函數(shù)關(guān)系式;
(2)設(shè)工藝廠銷售該工藝品每天獲得的利潤(rùn)為W,試求出W與x之間的函數(shù)關(guān)系.并求出自變量的取值范圍.(利潤(rùn)=售價(jià)-成本)
(3)如果該工藝品售價(jià)最高不能超過(guò)每件30元,那么售價(jià)定為每件多少元時(shí),工藝廠銷售該工藝品每天獲得的利潤(rùn)最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我省某工藝廠為全運(yùn)會(huì)設(shè)計(jì)了一款成本為每件20元得工藝品,投放市場(chǎng)進(jìn)行試銷后發(fā)現(xiàn)每天的銷售量y(件)是售價(jià)x(元∕件)的一次函數(shù),當(dāng)售價(jià)為22元∕件時(shí),每天銷售量為780件;當(dāng)售價(jià)為25元∕件時(shí),每天的銷售量為750件.
(1)求y與x的函數(shù)關(guān)系式;
(2)如果該工藝品售價(jià)最高不能超過(guò)每件30元,那么售價(jià)定為每件多少元時(shí),工藝廠銷售該工藝品每天獲得的利潤(rùn)最大?最大利潤(rùn)是多少元?(利潤(rùn)=售價(jià)-成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆福建廈門海滄區(qū)九年級(jí)質(zhì)量檢查數(shù)學(xué)試卷(帶解析) 題型:解答題

我省某工藝廠為全運(yùn)會(huì)設(shè)計(jì)了一款工藝品的成本是20元∕件.投放市場(chǎng)進(jìn)行試銷后發(fā)現(xiàn)每天的銷售量(件)是售價(jià)(元∕件)的一次函數(shù),當(dāng)售價(jià)為22元∕件時(shí),每天銷售量為380件;當(dāng)售價(jià)為25元∕件時(shí),每天的銷售量為350件.
【小題1】求的函數(shù)關(guān)系式
【小題2】該工藝品售價(jià)定為每件多少元時(shí),每天獲得的利潤(rùn)最大?最大利潤(rùn)是多少元?(利潤(rùn)=銷售收入-成本)

查看答案和解析>>

同步練習(xí)冊(cè)答案