【題目】觀察下列關(guān)于a的單項(xiàng)式,探究其規(guī)律:a,3a2,5a37a4,9a5,.按照上述規(guī)律,第2019個(gè)單項(xiàng)式是( 。

A. 2019a2019B. 4039a2019C. 4038a2019D. 4037a2019

【答案】D

【解析】

系數(shù)的規(guī)律:第n個(gè)對(duì)應(yīng)的系數(shù)是2n1.指數(shù)的規(guī)律:第n個(gè)對(duì)應(yīng)的指數(shù)是n

根據(jù)分析的規(guī)律,得

2019個(gè)單項(xiàng)式是4037x2019

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果20m表示向北走20m,那么﹣30m表示_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B,C的坐標(biāo)分別為(1,0),(0,1),(﹣1,0).一個(gè)電動(dòng)玩具從坐標(biāo)原點(diǎn)0出發(fā),第一次跳躍到點(diǎn)P1 . 使得點(diǎn)P1與點(diǎn)O關(guān)于點(diǎn)A成中心對(duì)稱;第二次跳躍到點(diǎn)P2 , 使得點(diǎn)P2與點(diǎn)P1關(guān)于點(diǎn)B成中心對(duì)稱;第三次跳躍到點(diǎn)P3 , 使得點(diǎn)P3與點(diǎn)P2關(guān)于點(diǎn)C成中心對(duì)稱;第四次跳躍到點(diǎn)P4 , 使得點(diǎn)P4與點(diǎn)P3關(guān)于點(diǎn)A成中心對(duì)稱;第五次跳躍到點(diǎn)P5 , 使得點(diǎn)P5與點(diǎn)P4關(guān)于點(diǎn)B成中心對(duì)稱;…照此規(guī)律重復(fù)下去,則點(diǎn)P2015的坐標(biāo)為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABP中,CBP邊上一點(diǎn),∠PAC=∠PBA,⊙O是△ABC的外接圓,AD是⊙O的直徑,且交BP于點(diǎn)E.

(1)求證:PA是⊙O的切線;

(2)過(guò)點(diǎn)C作CF⊥AD,垂足為點(diǎn)F,延長(zhǎng)CF交AB于點(diǎn)G,若AGAB=12,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,且B(1,0),C(0,3),將BOC繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)90°,C點(diǎn)恰好與A重合.

(1)求該二次函數(shù)的解析式;

(2)若點(diǎn)P為線段AB上的任一動(dòng)點(diǎn),過(guò)點(diǎn)PPEAC,交BC于點(diǎn)E,連結(jié)CP,求△PCE面積S的最大值;

(3)設(shè)拋物線的頂點(diǎn)為M,Q為它的圖象上的任一動(dòng)點(diǎn),若△OMQ為以OM為底的等腰三角形,求Q點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】AB兩地相距216千米,甲、乙分別在A、B兩地,若甲騎車的速度為15千米/時(shí),乙騎車的速度為12千米/時(shí)。.

1甲、乙同時(shí)出發(fā),背向而行,問(wèn)幾小時(shí)后他們相距351千米?

2甲、乙相向而行,甲出發(fā)三小時(shí)后乙才出發(fā),問(wèn)乙出發(fā)幾小時(shí)后兩人相遇?

3甲、乙相向而行,要使他們相遇于AB的中點(diǎn),乙要比甲先出發(fā)幾小時(shí)?

4甲、乙同時(shí)出發(fā),相向而行,甲到達(dá)B處,乙到達(dá)A處都分別立即返回,幾小時(shí)后相遇?相遇地點(diǎn)距離A有多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】化簡(jiǎn):(a﹣1)(a+1)﹣(a﹣1)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,AD=2AB,F(xiàn)是AD的中點(diǎn),作CE⊥AB,垂足E在線段AB上,連接EF、CF,則下列結(jié)論:(1)∠DCF=∠BCD,(2)EF=CF;(3)S△BEC=2S△CEF;(4)∠DFE=3∠AEF,其中正確結(jié)論的個(gè)數(shù)是( 。

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A表示小雨家,點(diǎn)B表示小櫻家,點(diǎn)C表示小麗家,她們?nèi)仪『媒M成一個(gè)直角三角形,其中AC⊥BC,AC=900米,BC=1200米,AB=1500米.

(1)試說(shuō)出小雨家到街道BC的距離以及小櫻家到街道AC的距離.

(2)畫出表示小麗家到街道AB距離的線段.

查看答案和解析>>

同步練習(xí)冊(cè)答案