如圖,已知△ABC的頂點(diǎn)A,B,C的坐標(biāo)分別是A(-1,-1),B(-4,-3),C(-4,-1).
(1)作出△ABC關(guān)于原點(diǎn)O中心對稱的圖形△A1B1C1;
(2)寫出△A1B1C1各頂點(diǎn)的坐標(biāo).
解:(2)A1
1,1
1,1
),B1
4,3
4,3
),C1
4,1
4,1
).
分析:(1)根據(jù)A、B、C三點(diǎn)坐標(biāo)A(-1,-1),B(-4,-3),C(-4,-1),關(guān)于原點(diǎn)O的中心對稱圖形△A1B1C1,得出A1,B1,C1,三點(diǎn)的坐標(biāo),在坐標(biāo)系內(nèi)描出即可;
(2)在坐標(biāo)系內(nèi)找出A1,B1,C1三點(diǎn)的坐標(biāo),在坐標(biāo)系內(nèi)描出即可.
解答:解:(1)如圖所示:


(2)根據(jù)圖象可以看出:A1(1,1);B1(4,3);C1(4,1).
故答案為:A1(1,1),B1(4,3),C1(4,1).
點(diǎn)評:此題主要考查了中心對稱圖形的性質(zhì)以及平面坐標(biāo)系內(nèi)點(diǎn)的坐標(biāo)性質(zhì),利用平面坐標(biāo)系內(nèi)關(guān)于原點(diǎn)對稱的坐標(biāo)性質(zhì)是解決問題的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC的面積S△ABC=1.
在圖1中,若
AA1
AB
=
BB1
BC
=
CC1
CA
=
1
2
,則S△A1B1C1=
1
4
;
在圖2中,若
AA2
AB
=
BB2
BC
=
CC2
CA
=
1
3
,則S△A2B2C2=
1
3
;
在圖3中,若
AA3
AB
=
BB3
BC
=
CC3
CA
=
1
4
,則S△A3B3C3=
7
16
;
按此規(guī)律,若
AA8
AB
=
BB8
BC
=
CC8
CA
=
1
9
,S△A8B8C8=
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC的面積為4,且AB=AC,現(xiàn)將△ABC沿CA方向平移CA的長度,得到△EFA.
(1)判斷AF與BE的位置關(guān)系,并說明理由;
(2)若∠BEC=15°,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•溫州二模)如圖,已知△ABC的面積是2平方厘米,△BCD的面積是3平方厘米,△CDE的面積是3平方厘米,△DEF的面積是4平方厘米,△EFG的面積是3平方厘米,△FGH的面積是5平方厘米,那么,△EFH的面積是
4
4
 平方厘米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•孝感模擬)如圖,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-2,2)、B(-5,0)、C(-1,0).
(1)請直接寫出點(diǎn)A關(guān)于y軸對稱的點(diǎn)的坐標(biāo);
(2)將△ABC繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到△A1B1C1,再將△A1B1C1以C1為位似中心,放大2倍得到△A2B2C1,請畫出△A1B1C1和△A2B2C1,并寫出一個(gè)點(diǎn)A2的坐標(biāo).(只畫一個(gè)△A2B2C1即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別是A(-7,1),B(-3,3),C(-2,6).
(1)求作一個(gè)三角形,使它與△ABC關(guān)于y軸對稱;
(2)寫出(1)中所作的三角形的三個(gè)頂點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案