【題目】為了改善小區(qū)環(huán)境,某小區(qū)決定要在一塊一邊靠墻(墻長25m)的空地上修建一個矩形綠化帶ABCD,綠化帶一邊靠墻,另三邊用總長為40m的柵欄圍住(如圖).若設(shè)綠化帶的BC邊長為x m,綠化帶的面積為y m2.
(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)當(dāng)x為何值時,滿足條件的綠化帶的面積最大.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的一元二次方程.
(1)若此方程的一個根為1,求的值;
(2)求證:不論取何實數(shù),此方程都有兩個不相等的實數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,AB=AC,OB=OC,∠A=90°,∠MON=α,分別交直線AB、AC于點M、N.
(1)如圖1,當(dāng)α=90°時,求證:AM=CN;
(2)如圖2,當(dāng)α=45°時,問線段BM、MN、AN之間有何數(shù)量關(guān)系,并證明;
(3)如圖3,當(dāng)α=45°時,旋轉(zhuǎn)∠MON,問線段之間BM、MN、AN有何數(shù)量關(guān)系?并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】表中所列 的7對值是二次函數(shù) 圖象上的點所對應(yīng)的坐標(biāo),其中
x | … | … | |||||||
y | … | 7 | m | 14 | k | 14 | m | 7 | … |
根據(jù)表中提供的信息,有以下4 個判斷:
① ;② ;③ 當(dāng)時,y 的值是 k;④ 其中判斷正確的是 ( )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,⊙O是△ABC的外接圓,點D是上一動點(不與點A、C重合),且∠ADB=∠BAC=45°.
(1)求證:AC是⊙O的直徑;
(2)當(dāng)點D在運動到使AD+CD=5時,則線段BD的長為 ;(直接寫出結(jié)果)
(3)如圖2,把△DBC沿直線BC翻折得到△EBC,連接AE,當(dāng)點D在運動時,探究線段AE、BD、CD之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標(biāo)系,一條圓弧經(jīng)過網(wǎng)格點A、B、C,請在網(wǎng)格中進(jìn)行下列操作:
(1)請在圖中確定該圓弧所在圓心D點的位置,D點坐標(biāo)為 ;
(2)連接AD、CD,則⊙D的半徑為 ;扇形DAC的圓心角度數(shù)為 ;
(3)若扇形DAC是某一個圓錐的側(cè)面展開圖,求該圓錐的底面半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在△ABC中,AB=AC=3,∠BAC=100°,D是BC的中點.
小明對圖①進(jìn)行了如下探究:在線段AD上任取一點P,連接PB.將線段PB繞點P按逆時針方向旋轉(zhuǎn)80°,點B的對應(yīng)點是點E,連接BE,得到△BPE.小明發(fā)現(xiàn),隨著點P在線段AD上位置的變化,點E的位置也在變化,點E可能在直線AD的左側(cè),也可能在直線AD上,還可能在直線AD的右側(cè).
請你幫助小明繼續(xù)探究,并解答下列問題:
(1)當(dāng)點E在直線AD上時,如圖②所示.
①∠BEP= °;
②連接CE,直線CE與直線AB的位置關(guān)系是 .
(2)請在圖③中畫出△BPE,使點E在直線AD的右側(cè),連接CE.試判斷直線CE與直線AB的位置關(guān)系,并說明理由.
(3)當(dāng)點P在線段AD上運動時,求AE的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,AD=6,點E為AB上一點,AE=2,點F在AD上,將△AEF沿EF折疊,當(dāng)折疊后點A的對應(yīng)點A′恰好落在BC的垂直平分線上時,折痕EF的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于兩點(在的左側(cè)),與軸交于點, 點與點關(guān)于拋物線的對稱軸對稱.
(1)求拋物線的解析式及點的坐標(biāo):
(2)點是拋物線對稱軸上的一動點,當(dāng)的周長最小時,求出點的坐標(biāo);
(3)點在軸上,且,請直接寫出點的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com