【題目】襄陽市精準扶貧工作已進入攻堅階段.貧困戶張大爺在某單位的幫扶下,把一片坡地改造后種植了優(yōu)質(zhì)水果藍莓,今年正式上市銷售.在銷售的30天中,第一天賣出20千克,為了擴大銷量,采取了降價措施,以后每天比前一天多賣出4千克.第x天的售價為y元/千克,y關(guān)于x的函數(shù)解析式為 且第12天的售價為32元/千克,第26天的售價為25元/千克.已知種植銷售藍莓的成木是18元/千克,每天的利潤是W元(利潤=銷售收入﹣成本).
(1)m= ,n= ;
(2)求銷售藍莓第幾天時,當天的利潤最大?最大利潤是多少?
(3)在銷售藍莓的30天中,當天利潤不低于870元的共有多少天?
【答案】(1)m=﹣,n=25;(2)18,W最大=968;(3)12天.
【解析】(1)根據(jù)題意將第12天的售價、第26天的售價代入即可得;
(2)在(1)的基礎(chǔ)上分段表示利潤,討論最值;
(3)分別在(2)中的兩個函數(shù)取值范圍內(nèi)討論利潤不低于870的天數(shù),注意天數(shù)為正整數(shù).
(1)當?shù)?/span>12天的售價為32元/件,代入y=mx﹣76m得
32=12m﹣76m,
解得m=,
當?shù)?/span>26天的售價為25元/千克時,代入y=n,
則n=25,
故答案為:m=,n=25;
(2)由(1)第x天的銷售量為20+4(x﹣1)=4x+16,
當1≤x<20時,
W=(4x+16)(x+38﹣18)=﹣2x2+72x+320=﹣2(x﹣18)2+968,
∴當x=18時,W最大=968,
當20≤x≤30時,W=(4x+16)(25﹣18)=28x+112,
∵28>0,
∴W隨x的增大而增大,
∴當x=30時,W最大=952,
∵968>952,
∴當x=18時,W最大=968;
(3)當1≤x<20時,令﹣2x2+72x+320=870,
解得x1=25,x2=11,
∵拋物線W=﹣2x2+72x+320的開口向下,
∴11≤x≤25時,W≥870,
∴11≤x<20,
∵x為正整數(shù),
∴有9天利潤不低于870元,
當20≤x≤30時,令28x+112≥870,
解得x≥27,
∴27≤x≤30
∵x為正整數(shù),
∴有3天利潤不低于870元,
∴綜上所述,當天利潤不低于870元的天數(shù)共有12天.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對非負有理數(shù)x“四舍五入”到個位的值記為<x>.即n為非負整數(shù)時,如果時, 則<x>=n,例如:<0>=<0.48>=0;<0.64>=<1.493>=1;<2>=2;<3.52>=<4.48>=4;……嘗試解決下列問題:
(1)填空:①<3.49>=__________;②如果<2a-1>=3,那么a的取值范圍是__________;
(2)舉例說明<x+y>=<x> + <y>不恒成立;
(3)求滿足<x>=的所有非負有理數(shù)x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小柔要榨果汁,她有蘋果、芭樂、柳丁三種水果,且其顆數(shù)比為9:7:6,小柔榨完果汁后,蘋果、芭樂、柳丁的顆數(shù)比變?yōu)?/span>6:3:4,已知小柔榨果汁時沒有使用柳丁,關(guān)于她榨果汁時另外兩種水果的使用情形,下列敘述何者正確?( 。
A. 只使用蘋果
B. 只使用芭樂
C. 使用蘋果及芭樂,且使用的蘋果顆數(shù)比使用的芭樂顆數(shù)多
D. 使用蘋果及芭樂,且使用的芭樂顆數(shù)比使用的蘋果顆數(shù)多
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點P、Q分別是邊長為4cm的等邊的邊AB、BC上的動點,點P從頂點A,點Q從頂點B同時出發(fā),且它們的速度都是,設(shè)運動時間為t秒.
連接AQ、CP交于點M,則在P、Q運動的過程中,變化嗎:若變化,則說明理由,若不變,則求出它的度數(shù);
連接PQ,
當秒時,判斷的形狀,并說明理由;
當時,則______秒直接寫出結(jié)果
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AM和BN是⊙O的兩條切線,E為⊙O上一點,過點E作直線DC分別交AM,BN于點D,C,且CB=CE.
(1)求證:DA=DE;
(2)若AB=6,CD=4,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CD⊥AB,垂足為D,點E在BC上,EF⊥AB,垂足為F.
(1)CD與EF平行嗎?為什么?
(2)如果∠1=∠2,CD平分∠ACB,且∠3=120°,求∠ACB與∠1的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題7分)如圖,點B、F、C、E在一條直線上,F(xiàn)B=CE,AC=DF,請從下列三個條件:①AB=DE;②∠A=∠D;③∠ACB=∠DFE中選擇一個合適的條件,使AB∥ED成立,并給出證明.
(1)選擇的條件是 (填序號)
(2)證明:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】老張裝修完新房,元旦期間到商場購買冰箱、電視機和洗衣機三件家電,剛好該商場推出新年優(yōu)惠活動,具體優(yōu)惠情況如下表:
購物金額(原價) | 折扣優(yōu)惠 |
不超過3000元的部分 | 無折扣優(yōu)惠 |
超過3000元但不超過10000元部分 | 九五折() |
超過10000元的部分 | 九折 |
付款時,還可以享受單筆消費滿2000元立減160元優(yōu)惠 |
如:買原價5000元的商品,實際花費:
(元)
(1)已知老張購買的這三件家電原價合計為11500元,如果一次性支付,請求出他的實際花費;
(2)如果在該商場購買一件原價為元的商品().請用含的代數(shù)式表示實際花費;
(3)付款前,老張突然想到:如果一次性支付,雖然折扣優(yōu)惠更大,卻只能享受一次立減160元優(yōu)惠,如果將這三件家電分開支付或者兩件合并支付.另一件單獨支付,就可以享受多次立減160元優(yōu)惠,已知老張購買的冰箱原價4800元,電視機原價4600元,洗衣機原價2100元,請你通過計算幫老張設(shè)計出最優(yōu)惠的支付方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在△ABC中,∠BAC=90°,AB=AC,點E在AC上(且不與點A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.
(1)請直接寫出線段AF,AE的數(shù)量關(guān)系 ;
(2)將△CED繞點C逆時針旋轉(zhuǎn),當點E在線段BC上時,如圖②,連接AE,請判斷線段AF,AE的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)在圖②的基礎(chǔ)上,將△CED繞點C繼續(xù)逆時針旋轉(zhuǎn),請判斷(2)問中的結(jié)論是否發(fā)生變化?若不變,結(jié)合圖③寫出證明過程;若變化,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com