【題目】計算:
(1)
(2)
(3)
(4)(用公式計算)
【答案】(1)a8;(2)x2-4x+4-y2;(3)3a2-2a;(4)1.
【解析】
(1)先算乘方,再算乘法,最后算加法即可;
(2)按照平方差公式計算即可;
(3)先根據(jù)完全平方公式和多項式乘多項式的運(yùn)算法則展開,再合并同類項即可;
(4)把2013×2015變成(2014-1)(2014+1),再利用平方差公式計算即可.
(1)原式=-8a8+9a8=a8;
(2)原式=[(x-2)+y][(x-2)-y]=(x-2)2-y2=x2-4x+4-y2;
(3)原式=a2-4a+4+2(a2+2a-a-2)=a2-4a+4+2a2+2a-4=3a2-2a;
(4)原式=20142-(2014-1)(2014+1)=20142-(20142-1)=20142-20142+1=1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在矩形ABCD中,對角線AC與BD相交于點(diǎn)O,過點(diǎn)O作直線EF⊥BD,且交AD于點(diǎn)E,交BC于點(diǎn)F,連接BE,DF,且BE平分∠ABD.
①求證:四邊形BFDE是菱形;
②直接寫出∠EBF的度數(shù).
(2)把(1)中菱形BFDE進(jìn)行分離研究,如圖2,G,I分別在BF,BE邊上,且BG=BI,連接GD,H為GD的中點(diǎn),連接FH,并延長FH交ED于點(diǎn)J,連接IJ,IH,IF,IG.試探究線段IH與FH之間滿足的關(guān)系,并說明理由;
(3)把(1)中矩形ABCD進(jìn)行特殊化探究,如圖3,矩形ABCD滿足AB=AD時,點(diǎn)E是對角線AC上一點(diǎn),連接DE,作EF⊥DE,垂足為點(diǎn)E,交AB于點(diǎn)F,連接DF,交AC于點(diǎn)G.請直接寫出線段AG,GE,EC三者之間滿足的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1=∠2,∠5=∠6,∠3=∠4,試說明AE∥BD,AD∥BC.請完成下列證明過程.
證明:
∵∠5=∠6,
∴AB∥CE( ),
∴∠3=__________
∵∠3=∠4,
∴∠4=∠BDC( ),
∴ ∥BD( ),
∴∠2= ( )
∵∠1=∠2,
∴∠1=______,
∴AD∥BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,對角線AC、BD相交于點(diǎn)O,給出下列四組條件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC。其中一定能判斷這個四邊形是平行四邊形的條件共有
A. 1組 B. 2組 C. 3組 D. 4組
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,D是AC中點(diǎn),BE平分∠ABD交AC于點(diǎn)E,點(diǎn)O是AB上一點(diǎn),⊙O過B、E兩點(diǎn),交BD于點(diǎn)G,交AB于點(diǎn)F.
(1)判斷直線AC與⊙O的位置關(guān)系,并說明理由;
(2)當(dāng)BD=6,AB=10時,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形OABC的邊長為3,點(diǎn)A、C分別在x軸,y軸的正半軸上,點(diǎn)D(1,0)在OA上,P是OB上一動點(diǎn),則PA+PD的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CD是AB邊上高,若AD=16,CD=12,BD=9.
(1)求△ABC的周長;
(2)判斷△ABC的形狀并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=BC=CA,∠A=∠ABC=∠ACB,在△ABC的頂點(diǎn)A,C處各有一只小螞蟻,它們同時出發(fā),分別以相同速度由A向B和由C向A爬行,經(jīng)過t(s)后,它們分別爬行到了D,E處,設(shè)DC與BE的交點(diǎn)為F.
(1)△ACD≌△CBE嗎?為什么?
(2)小螞蟻在爬行過程中,DC與BE所成的∠BFC的大小有無變化?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了保護(hù)環(huán)境,某公交公司決定購買A、B兩種型號的全新混合動力公交車共10輛,其中A種型號每輛價格為a萬元,每年節(jié)省油量為萬升;B種型號每輛價格為b萬元,每年節(jié)省油量為萬升:經(jīng)調(diào)查,購買一輛A型車比購買一輛B型車多20萬元,購買2輛A型車比購買3輛B型車少60萬元.
請求出a和b;
若購買這批混合動力公交車每年能節(jié)省萬升汽油,求購買這批混合動力公交車需要多少萬元?
【答案】(1);(2)購買這批混合動力公交車需要1040萬元.
【解析】
(1)根據(jù)“購買一臺A型車比購買一臺B型車多20萬元,購買2臺A型車比購買3臺B型車少60萬元.”即可列出關(guān)于a、b的二元一次方程組,解之即可得出結(jié)論;
(2)設(shè)A型車購買x臺,B型車購買y臺,根據(jù)總節(jié)油量=2.4×A型車購買的數(shù)量+2.2×B型車購買的數(shù)量、A型車數(shù)量+B型車數(shù)量=10得出方程組,解之求得x和y的值,再根據(jù)總費(fèi)用=120×A型車購買的數(shù)量+100×B型車購買的數(shù)量即可算出購買這批混合動力公交車的總費(fèi)用.
解:根據(jù)題意得:,
解得:;
設(shè)A型車購買x臺,B型車購買y臺,
根據(jù)題意得:,
解得:,
萬元.
答:購買這批混合動力公交車需要1040萬元.
【點(diǎn)睛】
本題考查了二元一次方程組的應(yīng)用,根據(jù)題意找出等量關(guān)系列出方程組是解題的關(guān)鍵.
【題型】解答題
【結(jié)束】
16
【題目】在邊長為1的正方形網(wǎng)格中
作出關(guān)于直線MN對稱的;
若經(jīng)過圖形平移得到,當(dāng)點(diǎn)A的坐標(biāo)是時,請建立適當(dāng)?shù)闹苯亲鴺?biāo)系,分別寫出點(diǎn),,的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com