【題目】如圖,長方形OABC的OA邊在x軸的正半軸上,OC在y軸的正半軸上,拋物線y=ax2+bx經過點B(1,4)和點E(3,0)兩點.
(1)求拋物線的解析式;
(2)若點D在線段OC上,且BD⊥DE,BD=DE,求D點的坐標;
(3)在條件(2)下,在拋物線的對稱軸上找一點M,使得△BDM的周長為最小,并求△BDM周長的最小值及此時點M的坐標;
(4)在條件(2)下,從B點到E點這段拋物線的圖象上,是否存在一個點P,使得△PAD的面積最大?若存在,請求出△PAD面積的最大值及此時P點的坐標;若不存在,請說明理由.
【答案】(1)y=﹣2x2+6x;(2)D(0,1);(3)△BDM的周長最小值為,M(,);(4)點P的坐標為(,).
【解析】
試題分析:(1)將點B(1,4),E(3,0)的坐標代入拋物線的解析式,得到關于a、b的方程組,求得a、b的值,從而可得到拋物線的解析式;(2)依據(jù)同角的余角相等證明∠BDC=∠DE0,然后再依據(jù)AAS證明△BDC≌△DEO,從而得到OD=AO=1,于是可求得點D的坐標;(3)作點B關于拋物線的對稱軸的對稱點B′,連接B′D交拋物線的對稱軸與點M.先求得拋物線的對稱軸方程,從而得到點B′的坐標,由軸對稱的性質可知當點D、M、B′在一條直線上時,△BMD的周長有最小值,依據(jù)兩點間的距離公式求得BD和B′D的長度,從而得到三角形的周長最小值,然后依據(jù)待定系數(shù)法求得D、B′的解析式,然后將點M的橫坐標代入可求得點M的縱坐標;(4)過點F作FG⊥x軸,垂足為G.設點F(a,﹣2a2+6a),則OG=a,F(xiàn)G=﹣2a2+6a.然后依據(jù)S△FDA=S梯形DOGF﹣S△ODA﹣S△AGF的三角形的面積與a的函數(shù)關系式,然后依據(jù)二次函數(shù)的性質求解即可.
試題解析:(1)將點B(1,4),E(3,0)的坐標代入拋物線的解析式得:,
解得:a=-2,b=6,
拋物線的解析式為y=﹣2x2+6x.
(2)如圖1所示;
∵BD⊥DE,
∴∠BDE=90°.
∴∠BDC+∠EDO=90°.
又∵∠ODE+∠DEO=90°,
∴∠BDC=∠DE0.
在△BDC和△DOE中,,
∴△BDC≌△DEO.
∴OD=AO=1.
∴D(0,1).
(3)如圖2所示:作點B關于拋物線的對稱軸的對稱點B′,連接B′D交拋物線的對稱軸與點M.
∵x=﹣=,
∴點B′的坐標為(2,4).
∵點B與點B′關于x=對稱,
∴MB=B′M.
∴DM+MB=DM+MB′.
∴當點D、M、B′在一條直線上時,MD+MB有最小值(即△BMD的周長有最小值).
∵由兩點間的距離公式可知:BD=,DB′=,
∴△BDM的最小值=.
設直線B′D的解析式為y=kx+b.
將點D、B′的坐標代入得:,
解得:k=,b=1.
∴直線DB′的解析式為y=x+1.
將x=代入得:y=.
∴M(,).
(4)如圖3所示:過點F作FG⊥x軸,垂足為G.
設點F(a,﹣2a2+6a),則OG=a,F(xiàn)G=﹣2a2+6a.
∵S梯形DOGF=(OD+FG)OG=(﹣2a2+6a+1)×a=﹣a3+3a2+a,S△ODA=ODOA=×1×1=,S△AGF=AGFG=﹣a3+4a2﹣3a,
∴S△FDA=S梯形DOGF﹣S△ODA﹣S△AGF=﹣a2+a﹣.
∴當a=時,S△FDA的最大值為.
∴點P的坐標為(,).
科目:初中數(shù)學 來源: 題型:
【題目】尤秀同學遇到了這樣一個問題:如圖1所示,已知AF,BE是△ABC的中線,且AF⊥BE,垂足為P,設BC=a,AC=b,AB=c.
求證:.
該同學仔細分析后,得到如下解題思路:
先連接EF,利用EF為△ABC的中位線得到△EPF∽△BPA,故,設PF=m,PE=n,用m,n把PA,PB分別表示出來,再在Rt△APE,Rt△BPF中利用勾股定理計算,消去m,n即可得證.
(1)請你根據(jù)以上解題思路幫尤秀同學寫出證明過程.
(2)利用題中的結論,解答下列問題:
在邊長為3的菱形ABCD中,O為對角線AC,BD的交點,E,F(xiàn)分別為線段AO,DO的中點,連接BE,CF并延長交于點M,BM,CM分別交AD于點G,H,如圖2所示,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明在學校組織的社會調查活動中負責了解他所居住的小區(qū)560戶居民的家庭收入情況.他從中隨機調查了一定戶數(shù)的家庭收入情況(收入取整數(shù),單位:元),并繪制了如下的頻數(shù)分布表和頻數(shù)分布直方圖.
分組 | 頻數(shù) | 百分比 |
600≤x<800 | 2 | 5% |
800≤x<1000 | 6 | 15% |
1000≤x<1200 | a | 40% |
1200≤x<1400 | 9 | 22.5% |
1400≤x<1600 | b | c |
1600≤x<1800 | 2 | 5% |
合計 | 40 | 100% |
根據(jù)以上提供的信息,解答下列問題:
(1)頻數(shù)分布表中:a= ,b= ,c= .
(2)補全頻數(shù)分布直方圖.
(3)請估計該居民小區(qū)家庭屬于中等收入(大于1000不足1600元)的大約有多少戶?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形紙片ABCD沿對角線BD折疊,使點A落在平面上的F點處,DF交BC于點E.
(1)求證:△DCE≌△BFE;
(2)若CD=2,∠ADB=30°,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在“愛我永州”中學生演講比賽中,五位評委分別給甲、乙兩位選手的評分如下:
甲:8、7、9、8、8
乙:7、9、6、9、9
則下列說法中錯誤的是( )
A.甲、乙得分的平均數(shù)都是8
B.甲得分的眾數(shù)是8,乙得分的眾數(shù)是9
C.甲得分的中位數(shù)是9,乙得分的中位數(shù)是6
D.甲得分的方差比乙得分的方差小
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小紅同學要測量A、C兩地的距離,但A、C之間有一水池,不能直接測量,于是她在A、C同一水平面上選取了一點B,點B可直接到達A、C兩地.她測量得到AB=80米,BC=20米,∠ABC=120°.請你幫助小紅同學求出A、C兩點之間的距離.(參考數(shù)據(jù)≈4.5, ≈4.6)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列有關圓的一些結論:①與半徑長相等的弦所對的圓周角是30°;②圓內接正六邊形的邊長與該圓半徑相等;③垂直于弦的直徑平分這條弦;④平分弦的直徑垂直于弦.其中正確的是( )
A. ①②③ B. ①③④ C. ②③ D. ②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知兩組數(shù)據(jù):a1,a2,a3,a4,a5和a1-1,a2-1,a3-1,a4-1,a5-1,下列判斷中錯誤的是( )
A. 平均數(shù)不相等,方差相等 B. 中位數(shù)不相等,標準差相等
C. 平均數(shù)相等,標準差不相等 D. 中位數(shù)不相等,方差相等
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com