如圖,把一個直角三角形ABC繞著30°角的頂點B順時針旋轉(zhuǎn),使點A與CB的延長線上的點E重合,這時∠BDC的度數(shù)是( )

A.10°
B.15°
C.20°
D.30°
【答案】分析:根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠DBE=∠ABC=30°,BD=BC,則∠BCD=∠BDC,再由三角形的外角性質(zhì)得到∠DBE=∠BCD+∠BDC,即有∠BDC=∠DBE.
解答:解:∵△BDE是由△BAC繞著30°角的頂點B順時針旋轉(zhuǎn)得到,
∴∠DBE=∠ABC=30°,BD=BC,
∴∠BCD=∠BDC,
而∠DBE=∠BCD+∠BDC,
∴∠BDC=∠DBE=15°.
故選B.
點評:本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后兩圖形全等,即對應(yīng)角相等,對應(yīng)線段相等.也考查了等腰三角形的性質(zhì)以及三角形的外角性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,把一個直角三角形ABC繞著30°角的頂點B順時針旋轉(zhuǎn),使點A與CB的延長線上的點E重合,這時∠BDC的度數(shù)是( 。
A、10°B、15°C、20°D、30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•大慶)如圖,把一個直角三角形ACB(∠ACB=90°)繞著頂點B順時針旋轉(zhuǎn)60°,使得點C旋轉(zhuǎn)到AB邊上的一點D,點A旋轉(zhuǎn)到點E的位置.F,G分別是BD,BE上的點,BF=BG,延長CF與DG交于點H.
(1)求證:CF=DG;
(2)求出∠FHG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2015屆江蘇連云港崗埠中學(xué)八年級9月月考模擬數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,把一個直角三角形ACB(∠ACB=90°)繞著頂點B順時針旋轉(zhuǎn)60°,使得點C旋轉(zhuǎn)到AB邊上的一點D,點A旋轉(zhuǎn)到點E的位置.F,G分別是BD,BE上的點,BF=BG,延長CF與DG交于點H.

(1)求證:CF=DG;

(2)求出∠FHG的度數(shù).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(黑龍江大慶卷)數(shù)學(xué)(解析版) 題型:解答題

如圖,把一個直角三角形ACB(∠ACB=90°)繞著頂點B順時針旋轉(zhuǎn)60°,使得點C旋轉(zhuǎn)到AB邊上的一點D,點A旋轉(zhuǎn)到點E的位置.F,G分別是BD,BE上的點,BF=BG,延長CF與DG交于點H.

(1)求證:CF=DG;

(2)求出∠FHG的度數(shù).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,把一個直角三角形ACB(∠ACB=90°)繞著頂點B順時針旋轉(zhuǎn)60°,使得點C旋轉(zhuǎn)到AB邊上的一點D,點A旋轉(zhuǎn)到點E的位置.F,G分別是BD,BE上的點,BF=BG,延長CF與DG交于點H.
(1)求證:CF=DG;
(2)求出∠FHG的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案