【題目】如圖,將等邊△ABC繞點C順時針旋轉(zhuǎn)120°得到△EDC,連接AD,BD.則下列結(jié)論:①AC=AD;②BD⊥AC;③四邊形ACED是菱形.其中正確的個數(shù)是________________(填寫正確的序號).
【答案】①②③
【解析】
根據(jù)旋轉(zhuǎn)和等邊三角形的性質(zhì)得出∠ACE=120°,∠DCE=∠BCA=60°,AC=CD=DE=CE,求出△ACD是等邊三角形,求出AD=AC,根據(jù)菱形的判定得出四邊形ABCD和ACED都是菱形,根據(jù)菱形的判定推出AC⊥BD.
∵將等邊△ABC繞點C順時針旋轉(zhuǎn)120°得到△EDC,
∴∠ACE=120°,∠DCE=∠BCA=60°,AC=CD=DE=CE,
∴∠ACD=120°60°=60°,
∴△ACD是等邊三角形,
∴AC=AD,AC=AD=DE=CE,
∴四邊形ACED是菱形,
∵將等邊△ABC繞點C順時針旋轉(zhuǎn)120°得到△EDC,AC=AD,
∴AB=BC=CD=AD,
∴四邊形ABCD是菱形,
∴BD⊥AC,
∴①②③都正確,
故答案為:①②③.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD 中,以點 A 為圓心,AB 長為半徑畫弧交 AD 于點 F,再分別以點 B、F 為圓心,大于BF 的相同長為半徑畫弧,兩弧交于點 P,連接 AP 并延長交 BC 于點 E,連接 EF.
(1)根據(jù)以上尺規(guī)作圖的過程,證明四邊形 ABEF 是菱形;
(2)若菱形 ABEF 的邊長為 2,AE= 2 ,求菱形 ABEF 的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,等腰直角三角形AOB在如圖所示的位置,點B的橫坐標(biāo)為2,將△AOB繞點O按逆時針方向旋轉(zhuǎn)90°,得到△A′OB′,則點A′的坐標(biāo)為( 。
A. (1,1) B. (,)
C. (﹣1,1) D. (﹣,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品的進(jìn)價為每件50元.當(dāng)售價為每件70元時,每星期可賣出300件,現(xiàn)需降價處理,且經(jīng)市場調(diào)查:每降價1元,每星期可多賣出20件.在確保盈利的前提下,解答下列問題:
(1)若設(shè)每件降價x元、每星期售出商品的利潤為y元,請寫出y與x的函數(shù)關(guān)系式,并求出自變量x的取值范圍;
(2)當(dāng)降價多少元時,每星期的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,A,B兩個頂點在x軸的上方,點C的坐標(biāo)是(-1,0).以點C為位似中心,在x軸的下方作△ABC的位似圖形,并把△ABC的邊長放大到原來的2倍,記所得的像是△A′B′C.設(shè)點B的對應(yīng)點B′的橫坐標(biāo)是a,則點B的橫坐標(biāo)是( )
A. - B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①,圖②均是的正方形網(wǎng)格,每個小正方形的邊長均為1,每個小正方形的頂點叫做格點.線段的端點都在格點上,僅用無刻度的直尺完成如下作圖,保留作圖痕跡.
(1)在圖①中畫一個鈍角,且點在格點上,使它有一邊與該邊上的高線長度相等;
(2)在圖②中畫一個五邊形,使其是軸對稱圖形,且,點、、在格點上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com