【題目】如圖8,四邊形ABEG、GEFH、HFCD都是邊長為1的正方形.
(1)求證:△AEF∽△CEA;
(2)求證:∠AFB+∠ACB=45°.
【答案】(1)證明見解析;(2)證明見解析.
【解析】試題分析:(1)由勾股定理求出AE,EC的長,進(jìn)而可得到AE:EF=EC:AE,再由公共角∠AEF=∠CEA,即可得出△FEA∽△AEC;
(2)由(1)得出對(duì)應(yīng)角相等∠AFB=∠EAC,再由三角形的外角性質(zhì)即可得出結(jié)論,
試題解析:證明:(1)∵四邊形ABEG、GEFH、HFCD是正方形
∴ AB=BE=EF=FC=1,∠ABE=90°
∴
∴
∴
又∵∠CEA=∠AEF,
∴ △CEA∽△AEF .
(2)∵△AEF∽△CEA,
∴∠AFE=∠EAC.
∵四邊形ABEG是正方形,
∴AD∥BC,AG=GE,∠AGE=90°.
∴∠ACB=∠CAD,∠EAG=45°,
∴∠AFB+∠ACB=∠EAC+∠CAD=∠EAG,
∴∠AFB+∠ACB=45° .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若ΔABC的邊AB=8cm,周長為18cm,當(dāng)邊BC=________cm時(shí),ΔABC為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線交軸于, 兩點(diǎn),交軸于點(diǎn),直線經(jīng)過坐標(biāo)原點(diǎn),與拋物線的一個(gè)交點(diǎn)為,與拋物線的對(duì)稱交于點(diǎn),連接,點(diǎn), 的坐標(biāo)分別為, .
()求拋物線的解析式,并分別求出點(diǎn)和點(diǎn)的坐標(biāo).
()在拋物線上是否存在點(diǎn),使≌,若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠ACB=90,D為BC邊上的中點(diǎn),DE⊥AB,垂足為點(diǎn)E,過點(diǎn)B作BF∥AC交DE的延長線于點(diǎn)F,連接CF.
(1)求證:AD⊥CF;
(2)連接AF,試判斷△ACF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)三角形的兩邊長為2和6,第三邊為偶數(shù),則這個(gè)三角形的周長為( 。
A.10
B.12
C.14
D.16
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com