【題目】如圖,在四邊形ABCD中,∠A=C=90°,∠B,在AB、BC上分別找一點E、F,使DEF的周長最。藭r,∠EDF=(  )

A.αB.C.D.180°-2α

【答案】D

【解析】

作點D關于BA的對稱點P,點D關于BC的對稱點Q,連接PQ,交ABE,交BCF,則點EF即為所求.根據(jù)四邊形內角和等于360°,可得∠ADC的度數(shù),進而可得∠P+Q的度數(shù),由對稱性可得∠EDP+FDQ的度數(shù),進而即可求解.

作點D關于BA的對稱點P,點D關于BC的對稱點Q,連接PQ,交ABE,交BCF,則點EF即為所求.

∵四邊形ABCD中,∠A=C=90°,∠B,

∴∠ADC=180°,

∴∠P+Q=180°-∠ADC=α,

由對稱性可知:EP=ED,FQ=FD

∴∠P=EDP,∠Q=FDQ

∴∠EDP+FDQ=P+Q=α,

故選D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)紹興市某風景區(qū)的旅游信息:

旅游人數(shù)

收費標準

不超過30

人均收費80

超過30

每增加1人,人均收費降低1元,但人均收費不低于55

A公司組織一批員工到該風景區(qū)旅游,支付給旅行社2800元.A公司參加這次旅游的員工有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學準備購進A、B兩種教學用具共40件,A種每件價格比B種每件價格貴8元,同時購進2A種教學用具和3B種教學用具恰好用去116元.

(1)A、B兩種教學用具的單價各是多少元?

(2)學校準備用不少于880元且不多于900元的金額購買A、B兩種教學用具,問A種教學用具最多能購買多少件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB⊥y軸,垂足為B,將△ABO繞點A逆時針旋轉到△AB1O1的位置,使點B的對應點B1落在直線y=﹣ x上,再將△AB1O1繞點B1逆時針旋轉到△A1B1O1的位置,使點O1的對應點O2落在直線y=﹣ x上,依次進行下去…若點B的坐標是(0,1),則點O12的縱坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場第1次用600元購進2B鉛筆若干支,第2次用800元又購進該款鉛筆,但這次每支的進價是第1次進價的八折,且購進數(shù)量比第1次多了100支.

1)求第1次每支2B鉛筆的進價;

2)若要求這兩次購進的2B鉛筆按同一價格全部銷售完畢后獲利不低于600元,問每支2B鉛筆的售價至少是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設中學生體質健康綜合評定成績?yōu)?/span>x分,滿分為100分,規(guī)定:85≤x≤100A級,75≤x≤85B級,60≤x≤75C級,x60D級.現(xiàn)隨機抽取福海中學部分學生的綜合評定成績,整理繪制成如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中的信息,解答下列問題:

1)在這次調查中,一共抽取了 名學生,α= %;

2)補全條形統(tǒng)計圖;

3)扇形統(tǒng)計圖中C級對應的圓心角為 度;

4)若該校共有2000名學生,請你估計該校D級學生有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校學生會在得知田同學患重病且家庭困難時,特向全校3000名同學發(fā)起愛心捐款活動,為了解捐款情況,學生會隨機調查了該校某班學生的捐款情況,并將得到的數(shù)據(jù)繪制成如下兩個統(tǒng)計圖,請根據(jù)相關信息解答下列問題.

1)該班的總人數(shù)為______人,將條形圖補充完整;

2)樣本數(shù)據(jù)中捐款金額的眾數(shù)______,中位數(shù)為______;

3)根據(jù)樣本數(shù)據(jù)估計該校3000名同學中本次捐款金額不少于20元有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的袋子中裝有僅顏色不同的個小球,其中紅球個,白球個.

1)先從袋子中取出個紅球(為正整數(shù)),再從袋子中隨機摸個小球,將“摸出白球”記為事件A,請完成下面表格:

事件

必然事件

隨機事件

的值

2)先從袋子中取出個紅球,再放入個一樣的白球并掘勻,隨機摸出個白球的頻率在附近擺動,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:∠AOB和兩點CD,求作一點P,使PC=PD,且點P到∠AOB的兩邊的距離相等.(要求:用尺規(guī)作圖,保留作圖痕跡,不寫作法,不要求證明)

查看答案和解析>>

同步練習冊答案