【題目】某校進(jìn)行校園美化工程招標(biāo)時,有甲、乙兩個工程隊投標(biāo),經(jīng)測算:甲隊單獨(dú)完成這項工程需要60天,如果由甲隊先做20天,剩下的工程由甲、乙合作24天完成.

1)乙隊單獨(dú)完成這項工程需要多少天?

2)甲隊施工一天,需要支付工程款3.5萬元,乙隊施工一天需要支付工程款2萬元:如果規(guī)定在70天內(nèi)完成這項工作,是由甲、乙兩隊單獨(dú)完成省錢?還是由甲乙合作完成該工程省錢?

【答案】(1)90;(2)合作省錢

【解析】

1)設(shè)乙隊單獨(dú)完成需要x天,由于題中工作時間明顯,所以一般是根據(jù)工作總量來列等量關(guān)系:甲20天的工作量+甲乙合作24天的工作量=1,據(jù)此列方程求解即可.

2)分別把各情況下的費(fèi)用計算出來進(jìn)行比較即可.

1 設(shè)乙隊單獨(dú)完成需要x天,

則:,

解得:,

經(jīng)檢驗,是原方程的解.

∴乙隊單獨(dú)完成需要90.

答:乙隊單獨(dú)完成需90.

2 設(shè)甲乙合作完成需要y天,

,

解得:.

∴①甲隊單獨(dú)完成費(fèi)用為:(萬元)

②乙隊單獨(dú)完成時間超過了70天,不符合題意.

③甲乙合作完成費(fèi)用為:=198(萬元).

,

∴綜上所述,甲乙合作更加省錢.

答:70天內(nèi)完成這項工作,由甲乙合作完成該工程省錢.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠一種產(chǎn)品去年的產(chǎn)量是100萬件,計劃明年產(chǎn)量達(dá)到121萬件,假設(shè)去年到明年這種產(chǎn)品產(chǎn)量的年增長率相同。

(1)求去年到明年這種產(chǎn)品產(chǎn)量的年增長率;

(2)今年這種產(chǎn)品的產(chǎn)量應(yīng)達(dá)到多少萬件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】郵遞員騎車從郵局出發(fā),先向南騎行2 km,到達(dá)A村,繼續(xù)向南騎行3 km到達(dá)B村,然后向北騎行9 km到達(dá)C村,最后回到郵局.

(1)以郵局為原點(diǎn),以向北為正方向,用0.5 cm表示1 km,畫出數(shù)軸,并在該數(shù)軸上表示出A,B,C三個村莊的位置.

(2)C村離A村有多遠(yuǎn)?

(3)郵遞員一共騎了多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】暑假期間,學(xué)校組織學(xué)生去某景點(diǎn)游玩,甲旅行社說:“如果帶隊的一名老師購買全票,則學(xué)生享受半價優(yōu)惠”; 乙旅行社說:“所有人按全票價的六折優(yōu)惠”.已知全票價為a元,學(xué)生有x人,帶隊老師有1人.

(1)試用含a和x的式子表示甲、乙旅行社的收費(fèi);

(2)若有30名學(xué)生參加本次活動,請你為他們選擇一家更優(yōu)惠的旅行社.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)的圖象經(jīng)過點(diǎn)(32)和(1,4).

1)畫出此函數(shù)的圖象;

2)求此一次函數(shù)的表達(dá)式;

3)若此函數(shù)的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,求線段AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)的圖象經(jīng)過(2,3)和(-1,-3)兩點(diǎn).

1)在平面直角坐標(biāo)系中畫出這個函數(shù)的圖象;

2)求這個一次函數(shù)的關(guān)系式.

3)求出該函數(shù)圖像與x軸的交點(diǎn)坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

1)(﹣2a23+2a2a4a8÷a2

2)﹣12018﹣(2+(﹣30

32aab)(a+2b

4)(﹣3m+2n)(﹣2n3m)(9m24n2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為組織代表隊參加市拜炎帝、誦經(jīng)典吟誦大賽,初賽后對選手成績進(jìn)行了整理,分成5個小組(x表示成績,單位:分),A組:75≤x80;B組:80≤x85C組:85≤x90;D組:90≤x95E組:95≤x100.并繪制出如圖兩幅不完整的統(tǒng)計圖.

請根據(jù)圖中信息,解答下列問題:

1)參加初賽的選手共有 名,請補(bǔ)全頻數(shù)分布直方圖;

2)扇形統(tǒng)計圖中,C組對應(yīng)的圓心角是多少度?E組人數(shù)占參賽選手的百分比是多少?

3)學(xué)校準(zhǔn)備組成8人的代表隊參加市級決賽,E6名選手直接進(jìn)入代表隊,現(xiàn)要從D組中的兩名男生和兩名女生中,隨機(jī)選取兩名選手進(jìn)入代表隊,請用列表或畫樹狀圖的方法,求恰好選中一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,A、B為x軸上兩點(diǎn),C、D為y軸上的兩點(diǎn),經(jīng)過點(diǎn)A、C、B的拋物線的一部分c1與經(jīng)過點(diǎn)A、D、B的拋物線的一部分c2組合成一條封閉曲線,我們把這條封閉曲線成為“蛋線”.已知點(diǎn)C的坐標(biāo)為(0,﹣ ),點(diǎn)M是拋物線C2:y=mx2﹣2mx﹣3m(m<0)的頂點(diǎn).

(1)求A、B兩點(diǎn)的坐標(biāo);

(2)“蛋線”在第四象限上是否存在一點(diǎn)P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請說明理由;

(3)當(dāng)△BDM為直角三角形時,求m的值.

查看答案和解析>>

同步練習(xí)冊答案