17、某商店將進(jìn)價(jià)為100元的某商品按120元的價(jià)格出售,可賣(mài)出300個(gè);若商店在120元的基礎(chǔ)上每漲價(jià)1元,就要少賣(mài)10個(gè),而每降價(jià)1元,就可多賣(mài)30個(gè).
(1)求所獲利潤(rùn)y (元)與售價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)為獲利最大,商店應(yīng)將價(jià)格定為多少元?
(3)為了讓利顧客,在利潤(rùn)相同的情況下,請(qǐng)為商店選擇正確的出售方式,并求出此時(shí)的售價(jià).
分析:(1)以120元為基礎(chǔ),當(dāng)漲價(jià)時(shí),大于120元,當(dāng)降價(jià)時(shí),小于120元,利用每個(gè)商品的利潤(rùn)×賣(mài)出數(shù)量=總利潤(rùn)分別寫(xiě)出函數(shù)關(guān)系式;
(2)利用配方法求得兩個(gè)函數(shù)解析式的最大值,比較得出答案;
(3)兩個(gè)函數(shù)聯(lián)立方程,求得方程的解即可解答.
解答:解:(1)當(dāng)x>120時(shí),
y1=-10x2+2500x-150000;
當(dāng)100<x<120時(shí),y2=-30x2+6900x-390000;

(2)y1=-10x2+2500x-150000=-10(x-125)2+6250;
y2=-30x2+6900x-390000=-30(x-115)2+6750;
6750>6250,
所以當(dāng)售價(jià)定為115元獲得最大為6750元;

(3)由y1=y2,
得-10x2+2500x-150000=-30x2+6900x-390000,
解得x1=120,x2=100(不合題意,舍去);
答:此時(shí)的售價(jià)為120元.
點(diǎn)評(píng):此題考查利用商品的利潤(rùn)×賣(mài)出數(shù)量=總利潤(rùn)列出函數(shù)解析式,配方法求最大值以及一元二次方程的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

28、某商店將進(jìn)價(jià)為100元的某商品按120元的價(jià)格出售,可賣(mài)出300個(gè);若商店在120元的基礎(chǔ)上每漲價(jià)1元,就要少賣(mài)10個(gè),而每降價(jià)1元,就可多賣(mài)30個(gè).
(1)若該商品在120元基礎(chǔ)上漲價(jià)x元,求所獲利潤(rùn)y1(元)與x(元)之間的函數(shù)關(guān)系式;
(2)若該商品在120元基礎(chǔ)上降價(jià)x元,求所獲利潤(rùn)y2(元)與x(元)之間的函數(shù)關(guān)系式;
(3)為獲利最大,商店應(yīng)將價(jià)格定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、某商店將進(jìn)價(jià)為100元的某商品按120元的價(jià)格出售,可賣(mài)出300件;若商店在120元的基礎(chǔ)上每漲價(jià)1元,就要少賣(mài)10件,而每降價(jià)1元,就可多賣(mài)30件.
(1)求所獲利潤(rùn)y (元)與售價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)為了獲取最大利潤(rùn),商店應(yīng)將每件商品的售價(jià)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年江蘇省宿遷市市直初中九年級(jí)(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

某商店將進(jìn)價(jià)為100元的某商品按120元的價(jià)格出售,可賣(mài)出300件;若商店在120元的基礎(chǔ)上每漲價(jià)1元,就要少賣(mài)10件,而每降價(jià)1元,就可多賣(mài)30件.
(1)求所獲利潤(rùn)y (元)與售價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)為了獲取最大利潤(rùn),商店應(yīng)將每件商品的售價(jià)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年陜西省西安市高新第三中學(xué)入學(xué)摸底數(shù)學(xué)試卷(解析版) 題型:解答題

(2012•沈河區(qū)模擬)某商店將進(jìn)價(jià)為100元的某商品按120元的價(jià)格出售,可賣(mài)出300個(gè);若商店在120元的基礎(chǔ)上每漲價(jià)1元,就要少賣(mài)10個(gè),而每降價(jià)1元,就可多賣(mài)30個(gè).
(1)求所獲利潤(rùn)y (元)與售價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)為獲利最大,商店應(yīng)將價(jià)格定為多少元?
(3)為了讓利顧客,在利潤(rùn)相同的情況下,請(qǐng)為商店選擇正確的出售方式,并求出此時(shí)的售價(jià).

查看答案和解析>>

同步練習(xí)冊(cè)答案