【題目】如圖,已知在矩形ABCD中,BC=2CD=2a,點E在邊CD上,在矩形ABCD的左側(cè)作矩形ECGF,使CG=2GF=2b,連接BD,CF,連結(jié)AF交BD于點H.
(1)求證:BD∥CF;
(2)求證:H是AF的中點;
(3)連結(jié)CH,若HC⊥BD,求a:b的值.
【答案】
(1)解:∵四邊形ABCD、四邊形ECGF均為矩形,
∴∠G=∠DCB=90°.
∵BC=2CD=2a,CG=2GF=2b,
∴ .
∴△FGC∽△DCB.
∴∠FCG=∠DBC.
∴BD∥CF.
(2)解:如圖1所示:連接AC,交BD于點O.
∵四邊形ABCD為矩形,
∴OC=OA.
又∵FC∥BD,
∴HF=AH.
∴點H是AF的中點.
(3)解:如圖2所示:連接CH,CA,AC與BD交于點O.
由勾股定理可知:FC= b,AC= a.
∵四邊形ABCD為矩形,
∴DB=AC= a,CO= AC= .
∵HO是△AFC的中位線,
∴HO= FC= .
∵ ,
∴CH= .
在△COH中,由勾股定理可知:HO2+CH2=OC2,即( )2+( )2=( )2.
整理得:a2= .
∴a:b= .
【解析】(1)根據(jù)矩形的性質(zhì)得出∠G=∠DCB,再根據(jù)已知BC=2CD=2a,CG=2GF=2b,得出兩邊對應(yīng)成比例,因此可證明△FGC∽△DCB.得出對應(yīng)角相等,即可證得結(jié)論。
(2)連接AC,交BD于點O.根據(jù)矩形的性質(zhì)得出OC=OA.再根據(jù)平行線等分線段定理,即可得出結(jié)論。
(3)連接CH,CA,AC與BD交于點O.由勾股定理求出FC、AC的長,再根據(jù)矩形的對角線相等且互相平分,求得CO的長,然后根據(jù)三角形的中位線定理求出HO的長,又由直角三角形的兩個面積公式得出CH的長,在△COH中,由勾股定理可求得a:b的值。
【考點精析】本題主要考查了勾股定理的概念和三角形中位線定理的相關(guān)知識點,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;連接三角形兩邊中點的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小麗假期在娛樂場游玩時,想要利用所學(xué)的數(shù)學(xué)知識測量某個娛樂場地所在山坡AE的高度.她先在山腳下的點E處測得山頂A的仰角是30°,然后,她沿著坡度i=1∶1的斜坡步行15分鐘到達C處,此時,測得點A的俯角是15°.已知小麗的步行速度是18米/分,圖中點A、B、E、D、C在同一平面內(nèi),且點D、E、B在同一水平直線上,求出娛樂場地所在山坡AE的高度AB.(精確到0.1米,參考數(shù)據(jù): ≈1.41).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校興趣小組,對函數(shù)y=|x﹣1|+1的圖像和性質(zhì)進行了研究,探究過程如下:
(1)自變量的取值范圍是全體實數(shù),與的幾組對應(yīng)值如表:
X | …… | 0 | 1 | 2 | 3 | 4 | 5 | …… | |||
y | …… | 5 | 4 | m | 2 | 1 | 2 | 3 | 4 | 5 | …… |
其中
(2)在平面直角坐標(biāo)系中,畫出上表中對應(yīng)值為點的坐標(biāo),根據(jù)畫出的點,畫出該函數(shù)的圖象;
(3)根據(jù)畫出的函數(shù)圖像特征,仿照示例,完成下表中函數(shù)的變化規(guī)律:
序號 | 函數(shù)圖像特征 | 函數(shù)變化規(guī)律 |
示例1 | 在直線的右側(cè),函數(shù)圖像自左至右呈上升趨勢 | 當(dāng)時y隨x的增大而增大 |
① | 在直線的右側(cè),函數(shù)圖像自左至右呈下降趨勢 | |
示例2 | 函數(shù)圖像經(jīng)過點(-3,5) | 當(dāng)時 |
② | 函數(shù)圖像的最低點是 | 當(dāng)時,函數(shù)有最(大或。┲,此時 |
(4)當(dāng)時,的取值范圍是_____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算下列各題:
(1)(﹣1)2018﹣2(π﹣1)0+(﹣)﹣2
(2)(2a﹣4)(a+5)﹣2(a﹣10)
(3)(2x+3y)(﹣2x+3y)﹣(x﹣3y)2
(4)(4x3y﹣6x2y2+12xy3)÷2xy
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A、B、C的坐標(biāo)分別為(-1,3)、(-4,1)、(-2,1),將△ABC沿一確定方向平移得到△A1B1C1,點B的對應(yīng)點B1的坐標(biāo)是(1,2),則點A1,C1的坐標(biāo)分別是( )
A.A1(4,4),C1(3,2)B.A1(3,3),C1(2,1)
C.A1(4,3),C1(2,3)D.A1(3,4),C1(2,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,點O是AC上一動點,過點O作直線MN∥BC,若MN交∠BCA的平分線于點E,交∠DCA的平分線于點F,連接AE、AF.
(1)若CE=12,CF=5,求OC的長;
(2)當(dāng)點O運動到何處時,四邊形AECF是矩形,并說明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】仔細閱讀下面解方程組的方法,然后解決有關(guān)問題:解方程組時,如果直接消元,那將會很繁瑣,若采用下面的解法,則會簡單很多.
解:①-②,得:2x+2y=2,即x+y=1③
③×16,得:16x+16y=16④
②-④,得:x=-1
將x=-1
代入③得:y=2
∴原方程組的解為:
(1)請你采用上述方法解方程組:
(2)請你采用上述方法解關(guān)于x,y的方程組,其中.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的一條弦,C是⊙O上一動點且∠ACB=45°,E、F分別是AC、BC的中點,直線EF與⊙O交于點G、H.若⊙O的半徑為2,則GE+FH的最大值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com