【題目】如圖,拋物線y=ax2+bx﹣5(a≠0)經(jīng)過點A(4,﹣5),與x軸的負(fù)半軸交于點B,與y軸交于點C,且OC=5OB,拋物線的頂點為點D.
(1)求這條拋物線的表達(dá)式;
(2)聯(lián)結(jié)AB、BC、CD、DA,求四邊形ABCD的面積;
(3)如果點E在y軸的正半軸上,且∠BEO=∠ABC,求點E的坐標(biāo).
【答案】
(1)
解:
∵拋物線y=ax2+bx﹣5與y軸交于點C,
∴C(0,﹣5),
∴OC=5.
∵OC=5OB,
∴OB=1,
又點B在x軸的負(fù)半軸上,
∴B(﹣1,0).
∵拋物線經(jīng)過點A(4,﹣5)和點B(﹣1,0),
∴ ,解得 ,
∴這條拋物線的表達(dá)式為y=x2﹣4x﹣5.
(2)
解:由y=x2﹣4x﹣5,得頂點D的坐標(biāo)為(2,﹣9).
連接AC,
∵點A的坐標(biāo)是(4,﹣5),點C的坐標(biāo)是(0,﹣5),
又S△ABC= ×4×5=10,S△ACD= ×4×4=8,
∴S四邊形ABCD=S△ABC+S△ACD=18
(3)
解:過點C作CH⊥AB,垂足為點H.
∵S△ABC= ×AB×CH=10,AB=5 ,
∴CH=2 ,
在RT△BCH中,∠BHC=90°,BC= ,BH= =3 ,
∴tan∠CBH= = .
∵在RT△BOE中,∠BOE=90°,tan∠BEO= ,
∵∠BEO=∠ABC,
∴ ,得EO= ,
∴點E的坐標(biāo)為(0, )
【解析】(1)先得出C點坐標(biāo),再由OC=5BO,得出B點坐標(biāo),將A、B兩點坐標(biāo)代入解析式求出a,b;(2)分別算出△ABC和△ACD的面積,相加即得四邊形ABCD的面積;(3)由∠BEO=∠ABC可知,tan∠BEO=tan∠ABC,過C作AB邊上的高CH,利用等面積法求出CH,從而算出tan∠ABC,而BO是已知的,從而利用tan∠BEO=tan∠ABC可求出EO長度,也就求出了E點坐標(biāo).本題為二次函數(shù)綜合題,主要考查了待定系數(shù)法求二次函數(shù)解析式、三角形面積求法、等積變換、勾股定理、正切函數(shù)等知識點,難度適中.第(3)問,將角度相等轉(zhuǎn)化為對應(yīng)的正切函數(shù)值相等是解答關(guān)鍵.
【考點精析】認(rèn)真審題,首先需要了解三角形的面積(三角形的面積=1/2×底×高),還要掌握勾股定理的概念(直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2)的相關(guān)知識才是答題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從一個等腰三角形紙片的某角的頂點出發(fā),能將其剪成兩個等腰三角形紙片,則原等腰三角形紙片的底角為_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某人沿一條直路行走,此人離出發(fā)地的距離千米與行走時間分鐘的函數(shù)關(guān)系如圖所示,請根據(jù)圖象提供的信息回答下列問題:
此人離開出發(fā)地最遠(yuǎn)距離是______ 千米;
此人在這次行走過程中,停留所用的時間為______ 分鐘;
由圖中線段OA可知,此人在這段時間內(nèi)行走的速度是每小時______ 千米;
此人在120分鐘內(nèi)共走了______ 千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某建筑物BC頂部有一旗桿AB,且點A,B,C在同一條直線上,小紅在D處觀測旗桿頂部A的仰角為47°,觀測旗桿底部B的仰角為42°已知點D到地面的距離DE為1.56m,EC=21m,求旗桿AB的高度和建筑物BC的高度(結(jié)果保留小數(shù)后一位).參考數(shù)據(jù):tan47°≈1.07,tan42°≈0.90.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,O為AC中點,過點O的直線分別與AB、CD交于點E、F,連結(jié)BF交AC于點M,連結(jié)DE、BO.若∠COB=60°,F(xiàn)O=FC,則下列結(jié)論:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正確結(jié)論的個數(shù)是( )
A.4個
B.3個
C.2個
D.1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=50°,∠ACB=60°,點E在BC的延長線上,∠ABC的平分線BD與∠ACE的平分線CD相交于點D,連接AD,以下結(jié)論:①∠BAC=70°;②∠DOC=90°;③∠BDC=35°;④∠DAC=55°,其中正確的是__________.(填寫序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a1+a2+…+a30+a31與b1+b2+…+b30+b31均為等差級數(shù),且皆有31項.若a2+b30=29,a30+b2=﹣9,則此兩等差級數(shù)的和相加的結(jié)果為多少?( 。
A.300
B.310
C.600
D.620
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABO中,AB⊥OB,OB= ,AB=1,把△ABO繞點O旋轉(zhuǎn)150°后得到△A1B1O,則點A1坐標(biāo)為( )
A.(﹣1,﹣ )
B.(﹣1,﹣ )或(﹣2,0)
C.(﹣ ,1)或(0,﹣2)
D.(﹣ ,1)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com